

Miljøpakken – E6 Jaktøyen-Storler

Byggeplan

SVV prosj.nr: 403719			Utarbeidet a	av:			
Prosj.nr:		KAPPUKI					
2702							
Dok.nr	••	Tittel:					
R	R-G-09	Grunnforhold og jordegenskaper					
Dato:		Fra: Til:					
07.11.2014		Alf Kristian Lund	istian Lund Karl Gunnar Sødal				
Rev.	Dato	Beskrivelse		Utført:	Kontrollert:		
0	03.11.2014	1. utgave		VGS	KK		
1 13.03.2015		Oppretting etter uavhengig kontroll, tolking av krypegenskaper, CPTU 2011, ødometerforsøk 2059, samt ny tolking av permeabilitet for mar	VGS	TmS			

Klæbuvn. 196 b, Trondheim, www.aajt.no

I samarbeid med: ViaNova Trondheim AS, Selberg Arkitekter AS, GeoVita AS, NGI, ECT AS, Brekke og Strand AS

RAAS-JA	AKOBSEN	Side: 2
Prosj. nr 2702	Miljøpakken E6 Jaktøyen-Storler Byggeplan	
Dok. Nr R-G-09	Grunnforhold og jordegenskaper	

Innhold

E6 mellom Jaktøyen og Storler sør for Trondheim skal utvides til 4-felts motorveg. Utbyggingen av selve motorvegen består blant annet av større terrenginngrep i form av store fyllinger og skjæringer. I tillegg er det planlagt en rekke bruer og underganger i forbindelse med kryssinger av ovennevnte veg. Pågående prosjektering er ledet av Dr. Ing. A. Aas-Jakobsen Trondheim AS som også er oppdragsgiver for Norges Geotekniske Institutt (NGI). NGI er, sammen med Geovita AS, geoteknisk rådgiver i prosjekteringsgruppen.

Foreliggende rapport inneholder generelle tolkinger og analyser av utførte grunnundersøkelser, samt karakteristiske verdier for jordparametere som generelt skal benyttes ved prosjekteringen.

Revisjonen inkluderer oppretting av avvik, samt enkelte presiseringer etter uavhengig kontroll utført av Multiconsult AS. I tillegg er det inkludert ny tolking av permeabilitet og krypegenskaper for marint avsatt leire, tolking av CPTU 2011 og tolking av nye ødometerforsøk i 2058 og 2059.

E6 Jaktøyen – Storler

Geoteknisk Fagrapport Grunnforhold og jordegenskaper

20130642-09-R 7. november 2014 Rev. nr.: 1/2015-03-13

Ved elektronisk overføring kan ikke konfidensialiteten eller autentisiteten av dette dokumentet garanteres. Adressaten bør vurdere denne risikoen og ta fullt ansvar for bruk av dette dokumentet.

Dokumentet skal ikke benyttes i utdrag eller til andre formål enn det dokumentet omhandler. Dokumentet må ikke reproduseres eller leveres til tredjemann uten elers samfykke. Dokumentet må ikke endres uten samtykke fra NGI.

Neither the confidentiality nor the integrity of this document can be guaranteed following electronic transmission. The addressee should consider this risk and take full responsibility for use of this document.

This document shall not be used in parts, or for other purposes than the document was prepared for. The document shall not be copied, in parts or in whole, or be given to a third party without the owner's consent. No changes to the document shall be made without consent from NGI.

Prosjekt

Prosjekttittel: Dokumenttittel: Dokumentnr.: Dato: Rev. nr./rev. dato:

E6 Jaktøyen-Storler Grunnforhold og jordegenskaper 20130642-09-R 7. november 2014 1/13. mars 2015

Oppdragsgiver

Oppdragsgiver:	Statens vegvesen region midt
Kontaktperson:	Karl Gunnar Sødal
Kontraktreferanse:	Kontrakt SVV-AAJ signert 12/12-2013

For NGI

Prosjektleder: Utarbeidet av:

Kontrollert av:

Alf Kristian Lund Bjørn Kristian Bache Vegard Gavel-Solberg Kjell Karlsrud

Sammendrag

NGI er engasjert av Dr. Ing. A. Aas-Jakobsen Trondheim for å gjøre geoteknisk prosjektering i forbindelse med utbygging av E6 parsell Jaktøyen – Storler. Det er utført grunnundersøkelser i flere omganger.

Løsmassene domineres av marine hav- og fjordavsetninger, dvs. hovedsakelig leire og silt. Grunnundersøkelser viser i store deler av området tykke forekomster av kvikkleire som er sammenhengende over et stort område. Sonderinger antyder at forekomsten av kvikkleire er begrenset til området nord og øst for profil 2800. Sør for profil 2800 har løsmassene innslag av grus, sand og silt.

Hovedkontor: Pb. 3930 Ullevål Stadion 0806 Oslo

Avd Trondheim: Pb. 5687 Sluppen 7485 Trondheim

T 22 02 30 00 F 22 23 04 48

Kontonr 5096 05 01281 Org. nr 958 254 318 MVA

ngi@ngi.no www.ngi.no

Poretrykksforholdene varierer for de ulike delene av området. For de flate delene av området står grunnvannstanden 0-2 meter under terrengnivå. For områder med sterk helning står den lavere. Spesielt i nærheten av Søra, Stokkbekken og Gaula er grunnvannstanden lav grunnet drenering ut mot elveleiet. Det er ikke registrert artesisk overtrykk i området. Poretrykksøkningen med dybden varierer generelt fra 80 - 100% av hydrostatisk poretrykksøkning.

Indeksforsøk gir grunnlag for å fastsette karakteristiske verdier for tyngdetetthet, vanninnhold og plastisitet. Verdiene fastsettes som følger:

- Tyngdetetthet: $\gamma = 19,5 \text{ kN/m}^3$.
- Vanninnhold: w = 32% (gjennomsnitt) for marint avsatt leire og 22 % (gjennomsnitt) for oppfylte eller rekonsoliderte leirmasser.
- Plastisitet: $I_p = 7$ (gjennomsnitt) for kvikke og sensitive leirer og $I_p = 14$ (gjennomsnitt) ikke-kvikke leirer.

Det er gjort forsøk på å anslå tidligere terrengnivå basert på ødometerforsøk og dagens høyeste terrengnivåer som antas ikke å være nederodert. Antagelsen om tidligere terrengnivå ligger til grunn for bestemmelse av overkonsolideringsgrad (OCR) der dette er benyttet.

Ødometerforsøk støttet opp mot erfaringsverdier ligger til grunn for valg av setningsparametere. Det er antatt følgende:

- $M_0 = 3,3 \cdot m_0 \cdot p_c'$
- $m_0 = 13 \text{ og } m = 23 \text{ ved vanninnhold } 32\%$
- $p'_r = 0.57 \cdot p'_c$
- $k_0 = 2 \cdot 10^{-9} m/s = 0,063 m/\text{å}r \text{ og } \beta_k = 5,0$
- $r_s = 510$

Attraksjon og friksjonsvinkel er tolket ut fra treaksialforsøk ved at disse er samplottet i et p'-q-diagram. Karakteristiske verdier for attraksjon er a = 2 kPa og for friksjonsvinkel φ = 31°. Udrenert skjærmodul fra treaksforsøk normaliseres mot direkte skjærfasthet og antas G₅₀^u/c_{u,d} =200 og G₂₅^u/c_{u,d} =300.

Udrenert skjærfasthet er i stor grad basert på tolking av CPTU-sonderinger gjennom korrelasjon med data fra høykvalitets blokkprøver. Skjærfasthetsprofiler som er bestemt støtter seg også på udrenert skjærfasthet fra treaksialforsøk og SHANSEP, men det legges størst vekt på CPTU-tolkingen.

Området er delt i fire deler, A, B, C og D ut fra variasjoner i løsmassene. Ulike karakteristiske skjærfasthetsprofiler for delene er vist i Tabell 0-1. Skjærfastheten er antatt konstant ned til et nivå, deretter lineært økende.

Sammendrag (forts.)

Dokumentnr.: 20130642-09-R Dato: 2014-11-07 Rev. nr.: 1/2015-03-13 Side: 5

	Del A	Del B	Del C	Del D
Konstant	cu = 50kPa	cu = 35kPa	cu = 46kPa	cu = 60kPa
fasthet i øvre del	Til 8m dybde	Til 10m dybde	Til 10m dybde	Til 6m dybde
Lineær	3,10 kPa/m	2,875 kPa/m	3,85kPa/m	3,18kPa/m
økning i	180kPa ved	150kPa ved	200kPa ved	200kPa ved
dybden	50m dybde	50m dybde	50m dybde	50m dybde

 Tabell 0-1:
 Karakteristiske skjærfasthetsprofiler for ulike delområder

Anisotropiforhold er bestemt fra aktive og passive treaksialforsøk som viste godt samsvar med anbefalingene fra NIFS. Anisotropifaktorene for området er:

c _{u,D} /c _{u,A}	= 0,63
$c_{u,P}/c_{u,A}$	= 0,35

Revisjonen inkluderer oppretting av avvik, samt enkelte presiseringer etter uavhengig kontroll utført av Multiconsult AS. I tillegg er det inkludert ny tolking av permeabilitet og krypegenskaper for marint avsatt leire, tolking av CPTU 2011 og tolking av nye ødometerforsøk i 2058 og 2059.

Innhold

Ko	ntroll- og referanseside	6
1	Innledning	7
2	Foreliggende undersøkelser / grunnlagsmateriale	8
3	Grunnforhold i parsellen Jaktøyen – Storler	8
	3.1 Generelt	8
	3.2 Kvartærgeologi	8
	3.3 Kvikkleire	9
	3.4 Lagdeling	11
	3.5 Søra	12
4	Tolking av materialparametere	12
	4.1 Indeksforsøk	12
	4.2 Grunnvann og poretrykk	16
	4.3 Ødometerforsøk	17
	4.4 Treaksialforsøk	23
	4.5 Anisotropiforhold	27
	4.6 Udrenert skjærfasthet	28
5	Referanser	33

Vedlegg

Vedlegg A	Oversiktskart Søra
Vedlegg B	Tolkede ødometerforsøk
Vedlegg C	Treaks-tolking
Vedlegg D	CPTU-tolking

Kontroll- og referanseside

1 Innledning

E6 mellom Jaktøyen og Storler sør for Trondheim skal utvides til 4-felts motorveg. Utbyggingen av selve motorvegen består blant annet av større terrenginngrep i form av store fyllinger og skjæringer. I tillegg er det planlagt en rekke bruer og underganger i forbindelse med kryssinger av ovennevnte veg. Pågående prosjektering er ledet av Dr. Ing. A. Aas-Jakobsen Trondheim AS (AAJT) som også er oppdragsgiver for Norges Geotekniske Institutt (NGI). NGI er, sammen med Geovita AS, geoteknisk rådgiver i prosjekteringsgruppen.

Foreliggende rapport inneholder generelle tolkinger og analyser av utførte grunnundersøkelser, samt karakteristiske verdier for jordparametere som generelt skal benyttes ved prosjekteringen.

Figur 1-1: Oversiktskart over området med omtrentlig plassering av ny veglinje. Kart hentet fra <u>www.trondheim.kommune.no/kart</u>

2 Foreliggende undersøkelser / grunnlagsmateriale

Beskrivelsen av grunnforholdene er basert på supplerende geotekniske undersøkelser utført av NGI våren 2014, ref. NGI-rapport 20130642-01-R [1], og tidligere undersøkelser utført av Multiconsult AS, 415531 - RIG-RAP-001 og 415531 - RIG-RAP-003 ref. [2] og [3]. Det henvises til ovennevnte rapporter for sporing av tidligere grunnundersøkelser.

3 Grunnforhold i parsellen Jaktøyen – Storler

3.1 Generelt

Terrenget innenfor prosjektområdet faller generelt fra øst mot vest. Hele tiltaksområdet ligger under marin grense, og terrenget består hovedsakelig av tidligere marine avsetninger som er sterkt preget av elveerosjon. Enkelte høydepunkter, som for eksempel Himmelhaugen ved kote +92, er områder som ikke er vesentlig nederodert og derfor er antatt å representere tidligere terrengnivå for området.

3.2 Kvartærgeologi

Kvartærgeologisk kart fra NGU viser at området domineres av marine hav- og fjordavsetninger, tykt dekke, jf. lyseblå markering i Figur 3-1. Gauldalen ble nederodert av isen. Etter siste istid lå hele området ved Klett under havnivå og det ble avsatt leire og silt på det som den gang var fjordbunn. I Gaulosen vest for Øysand er det berg 400 m under havnivå basert på seismiske undersøkelser [4]. I Melhus "sentrum" er det også utført seismikk, her er det tolket berg i 50-200 m dybde [5]. I forbindelse med grunnundersøkelsene er det boret til berg ved Storler, for øvrig er dybden til berg i prosjektområdet ikke kjent.

Figur 3-1: Kvartærgeologisk kart for området. Omtrentlig plassering av ny veglinje vist i rødt. Hentet fra <u>www.ngu.no</u>.

Etter issmeltingen har landet hevet seg og det som tidligere var fjordbunn i Gauldalen er blitt tørt land. Landskapet er preget av erosjon fra Gaula og sidevassdrag. Erosjonen har ført til en rekke skred, særlig kvikkleireskred. Det finnes beretninger fra noen historiske skred. NGU [6] refererer til Leinstrand Bygdebok ved A. Grønlie (1953) som beskriver "det store leirfallet" som gikk i 1650. Skredmasser ble avsatt helt ut til Gaula og demte opp et tjern Sør-Nypanvatnet. Skredet antas å ha kommet fra Jesmo. NGU beskriver videre at skredmassene ble avsatt over tidligere skredmasser og at det er funnet menneskeskjeletter i skredmassene. Det vil si at dette skredet har passert tvers gjennom prosjektområdet.

Historiske flyfoto og kart viser at det har foregått utstrakt landbruksplanering med utjevning av høydeforskjeller. Det er også foretatt bekkelukking og fylling i raviner i forbindelse med vegbygging.

Basert på historien i området forventes løsmassene å bestå av hovedsakelig leire og silt. Man vet at det er kvikkleire i området. Man må forvente å finne en blanding av intakt, marint avsatt leire og rekonsolidert leire avsatt av skred eller oppfylte masser.

3.3 Kvikkleire

Forekomst av kvikk eller sensitiv leire er påvist i en rekke boringer. Vedlagt kart, Figur 3-2, viser eksisterende risikosoner definert av NVE, samt omtrentlig avgrensing av områder det er påvist kvikkleire ved sonderinger. Planlagt veglinje går

gjennom to kvikkleiresoner, Klett-Sørnypan og Stor-Ler kvikkleiresoner. I tillegg er det definert flere soner sør og øst for planlagt veglinje.

Fra sør går planlagt veglinje gjennom del A hvor det ikke er påvist kvikkleire, markert med grønt. Del B omfatter et område rundt Klett hvor flere boringer har påvist kvikkleire, samt kvikkleiresone Klett-Sørnypan, markert med rødt. Søra krysser E6 i kulvert to ganger og Del C er definert mellom disse, markert med oransje. Det er påvist kvikkleire i Del C, men såpass dypt at planlagt inngrep ikke kommer i berøring med kvikkleire. I nord legges veglinja inn i kvikkleiresone Stor-Ler, definert som del D og markert med rød skravur.

Figur 3-2: Kvikkleireforekomst i området hvor det er relevant for prosjektet. Kvikkleiresoner markert med NVEs skravur og omtrentlig plassering av ny veglinje vist i rødt. I tillegg er det oppsummert grunnundersøkelser utført av NGI. Det er ikke påvist kvikkleire i del A (grønt). I del B (rødt) er det påvist kvikkleire. Det er også påvist kvikkleire i del C (oransje), men så dypt at behovet for økt sikkerhetskrav vurderes i hvert enkelt tilfelle. I del D (rød skråskravur) ligger veglinja i kvikkleiresone Stor-Ler definert av NVE.

Planlagt veglinje krysser grensene i delområdene ved følgende profilnummer:

- Del A: 600–2800
- Del B: 2800–3600
- Del C: 3600–4000
- Del D: 4000–4800

Det gjøres oppmerksom på at det er begrenset hvor nøyaktig tolkningene av spesielt totalsonderingene med tanke på kvikkleire/sprøbruddmaterialer kan være. Dataene i sin helhet gir imidlertid en indikasjon på hvor og i hvilke dybdeintervaller kvikkleire / sprøbruddmateriale kan påtreffes.

3.4 Lagdeling

Tolking av lagdeling er basert på tilgjengelige sonderinger og prøveserier for området. Tolkningene av hvert enkelt borehull er lagt inn i GeoSuite for deretter å bli presentert i et 3D-kart for å visualisere lagdelingen. Hovedsakelig viser lagdelingen tykk kvikkleireavsetning i del B, C og D under et fastere lag av tørrskorpe eller fast leire eller leirfylling. Tørrskorpen er generelt tynn i del B (1 - 3 meter), den er tykkere i del C og i nærheten av Søra (5 - 15 meter) og den er litt tynnere igjen i nordlig del av del D (4-8 meter).

Del A består av mer siltig leire, og her er sensitive materialer er kun påvist lengst nord i del B. De ulike delene beskrives mer detaljert i seksjonene under.

3.4.1 Del A

Del A består hovedsakelig av siltig leire. Lengst sør består de øverste meterne av sandige, grusige masser ned til 2,5 meter. Videre er det siltig, sandig leire ned til 5 meter, og vekselsvis sand og leire lagvis ned til minst 10 meter. Massene er generelt faste, og ved 15 meter er økt rotasjon og slagbor anvendt for å kunne bore videre.

For den nordre delen av området er massene fortsatt faste, med tørrskorpe de øverste 4 meterne. Leirinnholdet øker nordover i området. Videre er det siltig leire ned til om lag 9 meter før massene blir mer siltige og sandige ned til 15 meter. Materialet klassifiseres som middels plastisk og fast. Fastheten til massene avtar noe lengst nord, der et lavere siltinnhold gjør leira middels fast. Det er ikke påvist sensitive masser i området, men det er påvist kvikkleire mot Søra og mot kvikkleiresonen Klett-Sørnypan i nord. Grunnvannstand antas å stå gradvis dypere i retning Søra grunnet drenering mot elva. Det er ikke påvist fjell.

3.4.2 Del B

For del B består grunnen av tynn tørrskorpeleire (1-3 meter) over en mektig avsetning av leire. Leirmassene er generelt sensitive – meget sensitive ned til ca. 20 meter, og klassifiseres som lite – middels plastisk. Det er påvist kvikkleire i stor utstrekning. Sensitiviteten avtar gradvis etter ca. 20 meters dybde og grunnen består videre av leire. Fastheten varierer fra middels fast til fast. Det er ikke påvist fjell.

3.4.3 Del C

Området består av et 10-15m mektig topplag av tørrskorpeleire og middels fast til meget fast leire. Videre følger et mektig lag av sensitiv sprøbruddmateriale, mulig kvikk. Den sensitive leira er middels fast og ligger dypt. Massene er hovedsakelig middels plastiske, med enkelte innslag av meget plastisk leire. Det er ikke påvist fjell.

3.4.4 Del D

I sør består massene av en opp mot 15m mektig topplag av tørrskorpe og fast leire med lavt vanninnhold. Videre følger et mektig lag av leire. Fastheten varierer fra middels fast til fast. I to borpunkter (2055 og 2056) er det boret 3m inn i fjell i 32-36m dybde.

I nord består området av 4-8 m tørrskorpeleire over et kvikkleirelag med en tykkelse på om lag 4-7 meter med innslag av silt. Videre følger et mektig lag av leire. Massene er hovedsakelig lite til middels plastiske. Fastheten varierer fra middels fast til fast. Ved 15-20 meters dyp avtar sensitiviteten, og grunnen består videre av leire så langt boringene viser.

3.5 Søra

Bekkeløpet til Søra går gjennom flere områder der det er registrert kvikkleire. For å få en oversikt over hvor elvas utgravning og erosjon utgjør noen risiko er det gjort en vurdering av hvor elva eroderer i kvikkleire, og hvor kvikkleirenivået ligger godt under elvebunn slik at erosjon ikke vil direkte eksponere kvikkleire. Profilnummer som benyttes her er for Søra, og ikke for senterlinje E6. Oversikt er vist i Vedlegg A.

For nederste del av Søra (profil 0-100) er det ikke påvist noe kvikkleire, så elva eroderer her i ikke-sensitive masser. Nordvest for eksisterende rundkjøring ved Klett (profil 100 - 500) ligger kvikkleirenivået omtrent i bunn av bekkeløp, slik at Søra eroderer ned i kvikkleire.

For delen av Søra som ligger vest for Vigrid idrettshall (profil 770 - 1150) er tilgjengelige sonderinger relativt grunne og viser ingen tegn til kvikkleire ned til bunn elveløp. Med grunnlag i dypere sonderinger både oppstrøms og nedstrøms er det grunn til å anta kvikkleire at kan påtreffes fra noen meter under elvebunn.

Fra bekkeinnløpet til Lersbekken og nedstrøms (profil 1360 – 1680) viser sonderinger at kvikkleirenivået ligger om lag 5 meter under dagens elveleie.

Fra boligfeltet Esp Østre og mot innløpet til Lersbekken nedstrøms (profil 1680 – 2200) viser sonderinger at kvikkleirelaget ligger om lag 2 meter under antatt elvebunn. Det bemerkes at antatt elvebunn kan variere fra faktiske forhold, samt at variasjoner i lagdelingen kan gjøre at avstanden mellom elvebunn og kvikkleiren er lavere enn det sonderinger viser.

4 Tolking av materialparametere

4.1 Indeksforsøk

Indeksforsøk utført i området har blitt benyttet som et hjelpemiddel for å tolke type materiale.

4.1.1 Vanninnhold

Alle målinger av vanninnhold (wi) er plottet mot dybde i Figur 4-1. Gjennomsnittet for målte verdier av vanninnhold i kvikkleire er 32%. Dype prøver av leire, samt enkelte grunne prøver viser også omtrent samme vanninnhold som i kvikkleira. Det antas at disse prøvene er marint avsatt leire. For grunne prøver av leire og tørrskorpe vises et lavere vanninnhold om lag 22%. Disse massene er typisk mer drenerende og ligger i toppen av skråninger ned mot bekker og elver for hele området, samt det flate platået langs Gaula i del A. Disse massene er trolig rekonsoliderte skredmasser fra tidligere skred i området eller oppfylte leirmasser fra jordbruksplanering, bekkelukking eller vegbygging. Vanninnholdet i det organiske materiale som er funnet viser stor spredning med til dels høyt vanninnhold.

Figur 4-1: Sammenstilling av vanninnhold. Gjennomsnittlig målt vanninnhold i kvikkleire er 32%, og sammenfaller godt med dype prøver av marint avsatt leire. Grunne prøver av antatt rekonsolidert leire og tørrskorpe viser et lavere vanninnhold rundt 22%.

4.1.2 Tyngdetetthet

For å finne en karakteristisk tyngdetetthet (γ) for området er indeksforsøk av tyngdetetthet presentert i et samleplott i Figur 4-2. Målt tyngdetetthet varier mellom 18 og 21,3 kN/m³. Generelt er det valgt å benytte tyngdetetthet 19,5 kN/m³ i beregninger.

Figur 4-2: Sammenstilling av tyngdetetthet fra rutineundersøkelser. Målt tyngdetetthet varier mellom 18 og 21,3 kN/m³. Generelt er det valgt å benytte tyngdetetthet 19,5 kN/m³ i beregninger.

4.1.3 Plastisitet

Målinger av plastisitet (I_P) fra NGIs supplerende boringer er plottet mot dybde i Figur 4-3. Gjennomsnittlig plastisitet for kvikkleire i området er 7%. Det er registrert flere målinger av sensitiv leire med lav plastisitet, men som ikke faller innenfor definisjonen av kvikkleire. Det er en glidende overgang mot mindre sensitiv leire med høyere plastisitet. I hovedsak er det lite leire med plastisitet høyere enn 20%.

Figur 4-3: Sammenstilling av plastisitet. Gjennomsnitt av målt plastisitet i kvikkleire er 7%. Det er også registrert en del sensitiv leire med lav plastisitet, men som ikke faller innenfor kvikkleire-definisjonen. Det er lite leire med plastisitet høyere enn 20%.

Hovedtrendene for fasthet er beskrevet i avsnitt 4.6. Sensitivitet og plastisitet er også benyttet for tolkning av CPTU-sonderinger for å beregne CPTU-faktorene N_{kt} og $N_{\Delta u}$.

4.2 Grunnvann og poretrykk

Det er installert 24 piezometere i 12 borpunkter for å måle poretrykksforholdene i prosjektområdet. De ble installert i perioden fra 20. mars 2014 til 5. august 2014.

Figur 4-4 sammenstiller alle poretrykksmålinger i området. I tillegg er det vist kurver for 80%, 90%, og 100% av hydrostatisk poretrykk regnet fra grunnvannstand 1,5m under terrengnivå.

Figuren viser at grunnvannstanden og poretrykk varierer i området og egne vurderinger må gjøres i hvert enkelt beregningstilfelle. Generelt kan det sees at det ikke er problemer med artesisk overtrykk i området. I tillegg viser målingene at poretrykket i punktene 2045 og 2046 er vesentlig lavere enn i resten av området. Disse punktene er begge i del A, sør i området for planlagt veglinje.

Figur 4-4: Sammenstilling av poretrykksmålinger og poretrykkprofil for ulike gradienter. Grunnvannstand antatt 1,5m under terrengnivå.

4.3 Ødometerforsøk

Det er utført en rekke ødometerforsøk i prosjektområdet, av både NGI, ref. [1], Multiconsult AS ref. [2] og av Multiconsult AS/NTNU/Statens vegvesen, ref. [3]. Disse er tolket for å finne relevante parametere som definert av Karlsrud (2014) ref. [7], gjengitt i Figur 4-5. Tolkningen er vist i vedlegg B og en sammenstilling av tolkede parametere er presentert i Tabell B1-B3 i vedlegg B.

Figur 4-5: Ulike parametere for idealisering av ødometerforsøk. Figur hentet fra Karlsrud (2014), Figur 10, ref. [7].

4.3.1 Prøvekvalitet

Det er varierende kvalitet på utførte ødometerforsøk. For å vurdere kvaliteten er det lagt til grunn fire kriterier. Poretallsendringen under konsolidering brukes for å vurdere prøvekvaliteten i henhold til NGFs krav, ref. [8]. For å finne poretallsendringen benyttes volumtøyningen ved in situ spenning, *po'*. Det er imidlertid ikke gitt at god kvalitet i henhold til NGFs krav gir tydelig prekonsolideringsspenning eller ødometermodul. Det er derfor også vurdert andre forhold ved forsøkene. Herunder om referansespenningen pr' er positiv (godt forsøk), om M₀/M_L \geq 2 (godt forsøk) og en subjektiv vurdering av hvorvidt modul-spenningsstien ligner en idealisert oppførsel. Kriteriene gir ingen fasit alene og må vurderes samlet for en klassifisering av forsøkene. Eksempelvis kan en nær normalkonsolidert leire gi et lavt M₀/M_L-forhold uten at dette betyr at forsøket dårlig, det ligger i materialets natur. En samlet vurdering er derfor gjort for å klassifisere forsøkene som gode, nøytrale eller dårlige. En oppsummering av alle kriteriene og vurderingene er vist i Tabell B1 i vedlegg B.

Generelt er det mange forsøk som klassifiseres som dårlige forsøk. Dette gjør det utfordrende å definere sikre ødometermoduler og prekonsolideringsspenninger. Det er derfor knyttet en viss grad av usikkerhet til disse verdiene.

4.3.2 Tidligere terrengnivå

Tilgjengelige ødometerforsøk med som viser et tydelig overkonsolidert platå er brukt for å tolke en prekonsolideringsspenning pc'. Denne er deretter er brukt for å beregne et tidligere terrengnivå. Sammen med nåværende høydepunkt i området bidrar ødometerresultatene til å anslå tidligere terrengnivå for området.

For å beregne tidligere terrengnivå fra ødometerforsøkene er det lagt til grunn en tyngdetetthet $\gamma = 19,5$ kN/m³ og hydrostatisk poretrykk i terrengnivå. Det er lagt grunn en aging-faktor = 1,4 i beregningene, slik at tidligere terrengnivå Z_p i borpunktene beregnes ut fra:

$$Z_p = Dagens \ terreng - prøvedybde + \frac{p_c'}{\gamma' \cdot Aging - faktor}$$

Prekonsolideringsspenning og beregnet tidligere terrengnivå i hvert enkelt borehull er vist i Tabell B2. Disse punktene er vist i et lengdesnitt av planlagt veglinje. I tillegg er det vist en rekke eksisterende høydepunkter relativt nært vegen. Disse utgjør til sammen et grunnlag for hva som antas å være tidligere terrengnivå i området. Punktene og det antatt tidligere terrengnivået er vist på plantegning i Figur B1 og i lengdesnitt i Figur B2, vedlegg B.

Ettersom gode ødometerforsøk "strammer opp" prekonsolideringsspenningen er de høyeste beregnede verdiene lagt mest vekt på i tolkingen av tidligere terrengnivå. I tillegg gir dagens høydepunkter en god indikasjon på tidligere terrengnivå.

Generelt antas det at terrenget hadde stigning 1:28 fra kt +28 ved profil 2500 opp til kt +46 ved profil 3000. Fra profil 3000 til profil 3800 antas det at tidligere terrengnivå var tilnærmet flatt på kt +46. Deretter antas terreng med stigning om lag 1:25 opp til kt +94 ved profil 5000. Det antas at terrenget videre steg slakt oppover til kt +100 ved profil 5500. Det er ikke gjort vurderinger for tidligere terrengnivå videre.

4.3.3 Drenert modul og modultall

Noen materialparametere (M₀, M_L, p_c', p_r', m og m₀) fra gode ødometerforsøk er oppsummert i Tabell 4-1. I tillegg er det vist erfaringstall for noen parametere i Figur 4-6-Figur 4-9. Erfaringstallene er basert på høykvalitets blokkprøver, ref. [7].

Borehull	Dybde	Wi	p _c '	p'r	p'r/p'c	Mo	ML	M₀/(m₀*p₅')	m	m ₀
nr.	[m]	[%]	[kPa]	[kPa]	[-]	[MPa]	[MPa]	[-]	[-]	[-]
1210	9,40	31,0	220,0	200,0	0,91	6,0	1,0	4,3	23,5	6,4
1406	10,60	32,0	130,0	100,0	0,77	3,0	0,5	3,2	13,2	7,3
1445	3,40	35,0	400,0	150,0	0,38	9,0	6,0	1,9	16,1	12,0
1445	8,50	33,0	520,0	300,0	0,58	14,0	6,0	2,8	17,0	9,6
1502	9,99	37,0	160,0	120,0	0,75	3,4	1,7	1,9	19,8	11,1
1502	14,91	33,6	210,0	120,0	0,57	6,0	3,5	1,9	21,7	14,7
1502	18,67	33,2	250,0	50,0	0,20	5,0	3,5	1,4	18,4	14,1
1503	12,50	31,0	210,0	150,0	0,71	5,0	2,0	2,2	19,9	10,7
1503	14,45	32,0	160,0	50,0	0,31	3,5	3,5	1,4	19,1	15,2
1503	18,70	32,0	280,0	140,0	0,50	7,0	5,5	1,6	22,9	15,3
1504	12,48	32,0	200,0	60,0	0,30	4,0	3,0	1,7	15,3	11,7
2015	9,40	34,2	260,0	50,0	0,19	7,7	4,3	1,9	20,3	15,4
2017	8,46	33,4	490,0	175,0	0,36	13,6	8,0	2,0	19,0	13,8
2017	14,58	30,7	530,0	200,0	0,38	13,3	7,5	2,1	17,3	12,2
2036	10,48	34,2	230,0	50,0	0,22	8,0	5,4	2,0	18,8	17,8
2040	16,63	38,2	510,0	180,0	0,35	10,0	7,5	1,7	15,6	11,4
2040	17,33	33,9	590,0	250,0	0,42	14,0	7,2	2,1	16,7	11,1
2051	7,41	34,8	210,0	50,0	0,24	5,5	4,0	1,5	20,8	17,6
Gjennon	nsnitt	33,4			0,45			2,1	18,6	12,6

 Tabell 4-1:
 Oppsummering av tolkede parametere fra gode ødometerforsøk

Figur 4-6: Modul for overkonsolidert område plottet mot vanninnhold, ref. [7]

Figur 4-7: Modultall, m0, mot vanninnhold, ref. [7].

Figur 4-8: Modultall m, mot vanninnhold, ref. [7].

Figur 4-9: Referansespenning, pr' mot vanninnhold, ref. [7].

For et vanninnhold w_i=32% er forholdet $\frac{M_0}{m_0 \cdot p'_c}$ = 3,3 (variasjon: 2,1-5,8) i følge Figur 4-6. Gjennomsnittlig verdi for de gode ødometerforsøkene gjort i området viser et forhold lik 2,1. For svært gode ødometerforsøk vil modulen i overkonsolidert område, M₀, "strammes" opp ytterligere. For beregninger av setninger ved tilleggsspenninger lavere enn prekonsolideringstrykket er det derfor benyttet en Janbumodul etter ref. [7], M₀, gitt ved:

$$M_0 = 3,3 \cdot m_0 \cdot p_c'$$

For et vanninnhold w_i=32% skal modultallene være $m_0 = 12,3$ (variasjon: 8,6-16,9) og m = 22,9 (variasjon: 17,9-29,4) i følge Figur 4-7 og Figur 4-8. Gjennomsnittlig verdi for de gode ødometerforsøkene gjort i området viser modultall $m_0 = 12,6$ og

m = 18,6. For svært gode ødometerforsøk vil også det normalkonsoliderte området "strammes" opp ytterligere. I hovedsak påvirker dette m. Det legges derfor til grunn at modultall lik $m_0 = 13$ og m = 23.

For beregning av setninger i normalkonsolidert område er det benyttet en modell basert på ref. [7] der modultallet, m, og referansespenningen, p_r' , inngår. Disse er også valgt ut fra ref. [7]. Det er regnet ut p_r'/p_c' -forholdet som en praktisk tilnærming for å bestemme referansespenningen basert på empiri. Forholdet må nødvendigvis være mindre enn 1. Et høyt forhold gir lavere ødometermodul i normalkonsolidert område. For de gode ødometerforsøkene er gjennomsnittet 0,45. Noen av forsøkene gir et unaturlig lavt forhold og det antas at forholdet er litt høyere. Med bakgrunn i erfaringstall fra nevnte referanser og resultater fra utførte forsøk antas det derfor at referansespenningen er gitt ved:

$$p_r'=0.57\cdot p_c'$$

4.3.4 Permeabilitet

Tolket permeabilitet baseres på et konservativt valg i forhold til det som er funnet ved ødometerforsøkene, se Tabell B3 i vedlegg B. For marint avsatt leire er det funnet en gjennomsnittlig permeabilitet ved null volumtøyning, $k_0 = 2,2 * 10^{-9} m/s$. I tillegg underbygges valgene av generelle erfaringstall som finnes i ref. [7]. Tabell 4-2 viser antatt in-situ vertikal permeabilitet (ved null volumtøyning), k_0 , og parameteren β som beskriver endring av permeabilitet med volumtøyning beskrevet ved nedenstående uttrykk. Tabell 4-3 viser hvordan permeabiliteten vil endre seg med volumtøyning.

$$\log k_i = \log k_0 - \beta_k \cdot \varepsilon_a$$

Tabell 4-2:	Antatte permeabilitets	egenskaper baser	t på tolkede	ødometerforsøk
-------------	------------------------	------------------	--------------	----------------

k ₀	k ₀	βκ
2*10 ⁻⁹ m/s	0,063 m/år	5,0

ε _{vol} (%)	k [m/s]
0	2,00*10 ⁻⁹
2	1,59*10 ⁻⁹
5	1,12*10 ⁻⁹
10	0,63*10 ⁻⁹
20	0,20*10 ⁻⁹

Tabell 4-3: Permeabilitetsvariasjoner for ulike tøyningsnivå

4.3.5 Krypegenskaper

Fra aktuelle ødometerforsøk for marint avsatt leire finnes det noe krypdata. Basert på trinnvise ødometerforsøk, og CRS-forsøk der enkelte kryptrinn er inkludert i kjøringen av forsøket, viser disse et kryptall $r_s \approx 300-700$, se Tabell 4-4 og Figur B3-B26 i vedlegg B. På grunn av effekt av prøveforstyrrelse er de største verdiene antagelig noe høye, og er derfor sett bort i fra.

Borehull	Dybde	Wi	po'	pc'	rs	Туре	Figurref.
nr.	[m]	[%]	[kPa]	[kPa]	[-]	forsøk	
2010	9,38	30,0	14	-	1 788	IL	B3
2010	9,38	30,0	28	-	1 321	IL	B3
2010	9,38	30,0	62	-	1 662	IL	B3
2010	9,38	30,0	118	-	603	IL	B4
2010	9,38	30,0	238	-	286	IL	B4
2010	9,38	30,0	476	-	667	IL	B4
2010	9,38	30,0	953	-	667	IL	B5
2010	9,38	30,0	2 073	-	727	IL	B5
2012	17,48	28,8	28	-	3 027	IL	B7
2012	17,48	28,8	56	-	1 429	IL	B7
2012	17,48	28,8	112	-	2 828	IL	B7
2012	17,48	28,8	224	-	1 333	IL	B8
2012	17,48	28,8	482	_	800	IL	B8
2012	17,48	28,8	853	-	800	IL	B8
2012	17,48	28,8	1 694	-	667	IL	B9
2012	17,48	28,8	2 815	-	727	IL	B9
2010	9,4	29,2	210	-	1 133	CRS	B11
2010	14,4	34,1	260	-	1 133	CRS	B12
2011	10,4	27,6	1 020	-	1 333	CRS	B13
2011	15,4	29,5	700	-	867	CRS	B14
2012	12,63	25,3	900	-	1 133	CRS	B15
2015	9,4	34,2	340	260	333	CRS	B16
2015	9,4	34,2	3 500	260	733	CRS	B17
2017	8,46	33,4	1 000	490	333	CRS	B18
2017	8,46	33,4	4 200	490	600	CRS	B19
2018	8,52	31,8	650	250	467	CRS	B20
2051	7,41	34,8	300	210	467	CRS	B21
2051	7,41	34,8	867	210	867	CRS	B22
2058	11,36	28,7	600	290	533	CRS	B23
2058	11,36	28,7	1 250	290	733	CRS	B24
2059	9,5	29,1	325	240	667	CRS	B25
2059	9,5	29,1	1 250	240	733	CRS	B26

 Tabell 4-4:
 Oppsummering av tolkede krypparametere fra ødometerforsøk

Erfaringsverdier tilsier et forhold mellom modultall og tidsmotstandstall mellom 0,025 og 0,10, ref. [9]. Basert på oppnådde resultater fra utførte ødometerforsøk og erfaringsverdier fra litteraturen er kryptallet bestemt til, $r_s = 510$. Tolkede verdier ligger dermed innenfor det rapporterte intervallet for erfaringsverdier fra litteraturen. Se utregninger under.

$$\frac{C_{\alpha}}{C_{c}} = \frac{m}{r} = 0,025 - 0,10$$
$$\frac{m}{r} = \frac{23}{510} = 0,045$$
$$\frac{m_{0}}{r} = \frac{13}{510} = 0,025$$

4.4 Treaksialforsøk

Det er utført en rekke treaksialforsøk i prosjektområdet, av både NGI, ref. [1], Multiconsult AS ref. [2] og av Multiconsult AS/NTNU/Statens vegvesen, ref. [3]. Disse er tolket for å finne relevante parametere og en sammenstilling av tolkede parametere er presentert i Tabell C1 vedlegg C.

4.4.1 Prøvekvalitet

Treaksialforsøkene som er utført er av variabel prøvekvalitet. Poretallsendringen under konsolidering brukes for å vurdere prøvekvaliteten i henhold til NGFs krav, ref. [8]. I tillegg er det gjort en vurdering på tøyningskurven for forsøkene. Flere av forsøkene klassifiseres som gode forsøk uten at det vises noen distinkt topp i τ - ε diagrammet. Disse forsøkene anses derfor for å være av mindre god kvalitet. At andelen forsøk av dårlig prøvekvalitet er såpass stor skyldes trolig det høye siltinnholdet i materialet og at prøvene til dels er tatt i meget sensitive materialer. Klassifiseringen av treaksialforsøkene er presentert i Tabell C1 i Vedlegg C.

4.4.2 Fasthetsparametere

Det er tolket udrenert skjærfasthet fra treaksialforsøkene. Dette er gjort både ved maksimal fasthet og ved 1 % tøyning. Skjærfasthetsverdiene fra treaksialforsøk er senere sammenliknet mot skjærfasthetprofiler bestemt fra CPTU-tolk for å se om dette samsvarer. Verdiene er vist i plot av skjærfasthetprofiler.

Tolking av treaksialforsøk benyttes for å angi drenerte fasthetsparametere, attraksjon og friksjonsvinkel, φ , for området. Friksjonsvinkelen er bestemt ved å plotte middelspenning p' og deviatorspenning q, for treaksialforsøk ved både 5% og 15 % tøyning. Dette gir en grundig dokumentasjon av bruddtaket. Ved en så høy tøyning som 15 % antas det at materialet har nådd bruddtaket. Et samleplott vil derfor gi et godt

grunnlag for å bestemme friksjonsvinkel og attraksjon. I tillegg vil spenningssituasjonen ved en lavere tøyning kunne si om effekter fra forsøket innfører feilkilder som ikke gir riktig bruddtak.

Samleplottene er presentert i Figur 4-10 - Figur 4-12. Det vurderes at begge tøyningene gir samme bruddtak. Trendlinjene som representerer bruddtaket er gitt ved:

$$a = 2 \text{ kPa}$$

 $\varphi = 31^{\circ}$

Disse verdiene er også anvendt ved prosjektering for tilfeller der drenerte fasthetsparametere er relevante.

Figur 4-10: p'-q plott som viser verdier fra treaksialforsøk ved 15% tøyning. Trendlinjene som er vist representerer et bruddtak for attraksjon a = 2 kPa og friksjonsvinkel $\varphi = 31^{\circ}$.

Figur 4-11: p'-q plott som viser verdier fra treaksialforsøk ved 5% tøyning. Trendlinjene som er vist representerer et bruddtak for attraksjon a = 2 kPa og friksjonsvinkel $\varphi = 31^{\circ}$.

Figur 4-12: p'-q plott som sammenligner verdier fra treaksialforsøk ved 5% og 15% tøyning. Resultatene fra begge tøyningstilstander viser samme bruddtak. Trendlinjene som er vist representerer et bruddtak for attraksjon $a = 2 \ kPa \ og \ friksjonsvinkel \ \varphi = 31^{\circ}$.

4.4.3 Udrenert skjærmodul

Noen materialparametere ($s_{u,A}$, E_{50}^{u} og G_{50}^{u}) fra gode treaksforsøk er oppsummert i Tabell 4-5. Gode treaksforsøk er her definert som forsøk som både er klassifisert som "God" eller "Veldig god" i henhold til NGFs krav, ref. [8], og en bruddtøyning innenfor rimelige grenser. Gjennomsnittlig tolket skjærmodul normalisert mot direkte, udrenert skjærfasthet er da 190. Den direkte skjærfastheten er da beregnet med anisotropifaktorer beskrevet i avsnitt 4.5. Skjærmodulen antas å være relatert til skjærfastheten ved

$$\frac{G_{50}^u}{c_{uD}} = 200$$

På grunn av høye materialfaktorer for flere av beregningene, er det relevante spenningsintervallet en mindre mobilisering, 25% mobilisering, i stedet for 50% mobilisering. For å regne om skjærmodulen til en G_{25} -modul benyttes en 50% høyere modul enn G_{50} -modulen, jf. resultatene fra blokkprøvedatabasen vist i Figur 4-13. Normalisert sekantmodul ved 25% mobilisering er valgt til:

Figur 4-13: Forhold mellom sekantmoduler fra høykvalitets blokkprøver, ref. [10]

Borehull	Dybde	Wi	S u,A	E50	E50 /S u, A	G 50	G 50 /S u, D
						(vu=0,5)	
	[m]	[%]	[kPa]	[MPa]	[-]	[MPa]	[-]
2010	9,40	33,0	45,2	39,1	867	13,0	458
2012	17,40	29,0	85,6	32,7	383	10,9	202
2015	9,55	31,0	53,1	17,9	337	6,0	178
2015	16,40	32,0	81,8	33,3	407	11,1	215
2018	8,25	33,0	49,6	8,6	173	2,9	92
2018	11,40	33,0	67,6	13,8	204	4,6	108
2036	10,40	28,0	47,7	12,1	254	4,0	134
2040	16,40	38,0	74,4	27,1	365	9,0	193
2040	17,40	35,0	100,1	25,1	250	8,4	132
Gjennomsnitt			23,3	323	7,8	190	

Tabell 4-5:Oppsummering av materialparametere fra gode treaksforsøk

4.5 Anisotropiforhold

Det er utført noen aktive og passive treaksforsøk fra samme dybde i enkelte borehull for å bestemme anisotropiforhold. Forsøkene er av varierende prøvekvalitet, men tolking av resultatene viser at verdiene som er funnet stemmer over ens med NIFS' omforente anbefaling for anisotropifaktorer ref. [11]. Figur 4-14 sammenstiller målte verdier. Verdiene som benyttes er i tråd med anbefalingene for lavplastiske leirer:

Figur 4-14: Samleplott for anisotropifaktorer ved Klett. Figuren viser resultater fra Klett plottet mot resultater fra NIFS' omforente anbefaling for valg av anisotropiforhold ref. [11].

4.6 Udrenert skjærfasthet

4.6.1 Tolkning

Bestemmelse av karakteristisk aktiv udrenert skjærfasthet, c_{u;k}, baseres på tolkede CPTU-sonderinger og treaksialforsøk fra området. CPTU-sonderingene gir grunnlag for tolkning av skjærfastheten gjennom resultater fra poretrykks- og spissmotstandsmålingene:

$$c_u = \frac{u_2 - u_0}{N_{\Delta u}}$$
$$c_u = \frac{q_t - \sigma_{v0}}{N_{kt}}$$

der u₂ er målt poretrykk bak CPTU-sonden, u₀ er antatt stasjonært poretrykk, q_t er korrigert konmotstand, σ_{v0} er totalt overlagringstrykk og N_{kt} og N_{Δu} er koeffisienter. Koeffisientene regnes ut basert på korrelasjoner til høykvalitets blokkprøver ref. [12]. Uttrykkene for koeffisientene er avhengig av plastisitet I_P, sensitivitet S_t og overkonsolideringsgrad OCR, og er oppsummert i Tabell 4-6.

Tabell 4-6:	Uttrykk for	koeffisienter	ie N _{kt} og	N∆u	brukt for	tolking	av CPTU-
	sonderinger.	Uttrykkene	er basert	på k	korrelasjoi	ner til	høykvalitets
	blokkprøver,	ref. [12].					

Koofficient	Uttrykk for koeffisient			
Koenisient	Lavsensitiv leire, St < 15	Høysensitiv leire, St > 15		
N _{kt}	$7,8 + 2,5 \log OCR + 0,082I_P$	8,5 + 2,5 log OCR		
N _{Δu}	$6,9 - 4,0 \log OCR + 0,07I_P$	9,8 — 4,5 log <i>OCR</i>		

Verdier for plastisitet, sensitivitet og tyngdetetthet finnes fra prøveserier i det aktuelle borehullet eller fra nærliggende borehull dersom det ikke finnes prøvedata fra det aktuelle borehullet. Lagdelingen for den aktuelle CPTU-sonderingen som skal tolkes, vurderes ut fra sonderingen selv, sett i sammenheng med andre sonderinger og prøveserier fra området.

Overkonsolideringsgraden vurderes i dybden basert på resultater fra CPTU-sonderingen i seg selv, særlig i toppen, mens på større dyp styres det mot det som fremgår av tidligere terrengnivå (se seksjon 4.3.2 og vedlegg B). Årsaken til at resultatene fra CPTU-sonderingene vektlegges mer i toppen er på grunn av kjemiske forvitringsprosesser som ikke fanges opp av tolkningen av tidligere terrengnivå. Overkonsolideringsgraden beregnes fra uttrykkene vist nedenfor, basert på korrelasjoner til høykvalitets blokkprøver, ref. [12]:

$$OCR = \begin{cases} \left(\frac{Q_t}{3}\right)^{1,20}, & S_t < 15\\ \left(\frac{Q_t}{2}\right)^{1,11}, & S_t > 15 \end{cases}$$

hvor $Q_t = \frac{q_t - \sigma_{v_0}}{\sigma'_{v_0}}$.

Videre støttes grunnlaget for å bestemme et skjærfasthetprofil opp ved å anta et OCRbasert SHANSEP-profil gitt ved:

$$c_{u;a}/\sigma_{v0}$$
, = $\alpha * OCR^{m}$

Figur 4-15 viser verdier for aktiv skjærfasthet, $c_{u;a}/\sigma_{v0}'$, mot OCR fra treaksialforsøk sammen med verdier for høykvalitets blokkprøver, ref. [7]. Resultatene fra laboratorieforsøkene ligger i hovedsak lavere enn en korrelasjon basert på blokkprøver. Dette skyldes at treaksialforsøkene som er benyttet ikke er fra høykvalitets blokkprøver, men fra 72 mm forsøk med dels dårlig prøvekvalitet. Som grunnlag for prosjektering er det valgt SHANSEP-verdier m=0,7 og α =0,27, men som nevnt over vektes slike skjærfasthetsverdier opp mot hva som kommer direkte ut fra CPTU-sonderingene.

Figur 4-15: Sammenstilling av normalisert aktiv skjærfasthet fra treaksialforsøk plottet mot overkonsolideringsgrad (SHANSEP-plot).

Tolkning for å finne karakteristiske skjærfasthetprofiler ved de enkelte CPTUsonderingene er vist i Figur D1-D26 i vedlegg D. Figurene viser også direkte og passiv skjærfasthet basert på anisotropikoeffisienter definert i avsnitt 4.5. Figur 4-16 sammenstiller alle karakteristiske aktive skjærfasthetprofiler normalisert mot overlagringstrykk. Det fremgår av figuren at det er ganske stor variasjon i skjærfastheten over området. Denne variasjonen er i rimelig overensstemmelse med SHANSEP-fasthetsprofiler og skyldes reell variasjon i overlagringstrykket i området.

Det presiseres at den tolkede skjærfastheten vist i denne rapporten er en maksimal (peak) fasthet. Reduksjon av fasthet på grunn av kvikkleire gjøres på bakgrunn av en lokal tolkning for hvert enkelt beregningstilfelle.

Figur 4-16: Tolkede karakteristiske skjærfasthetprofiler normalisert mot overlagringstrykk. Det er ganske stor variasjon i skjærfasthet over området.

4.6.2 Fasthetsreduksjon i kvikkleire

For udrenerte fasthetsparametere i kvikkleire som er forankret i CPTU-korrelasjoner knyttet til forsøk på blokkprøver av meget høy kvalitet, ref. [12], skal det etter NVEs veileder 7-2014 benyttes 15% reduksjon av aktiv, udrenert skjærfasthet, ref. [13].

NGIs vurdering er at dette ikke medfører tilstrekkelig reduksjon av fastheten av den gjennomsnittlige fastheten, gjennom uendret direkte og passiv skjærfasthet. Med bakgrunn i høykvalitets blokkprøver har det derfor blitt foreslått at fastheten for høysensitiv leire (S_t > 15) reduseres 10-15% for aktiv skjærfasthet, 5-10% for direkte fasthet og 0-5% for passiv fasthet, ref. [7]. For å ta hensyn til sprøbruddeffekten, samt tøyningskompatibilitet, legges det til grunn større reduksjon av udrenert skjærfasthet (til konservativ side) enn det NVEs veileder setter som krav. Reduksjonsfaktorer som skal benyttes er:

- c_{u,A:} 15%
- c_{u,D:} 10%
- Cu,P: 5%

Viste fasthetsprofiler bakerst i rapporten er basert på korrelasjon til treaks-forsøk, altså en maksimal (peak) fasthet. Det legges derfor til grunn at fasthetsreduksjonen i kvikkleire foretas i det enkelte beregningstilfelle. Dette gjøres blant annet for å ha bedre kontroll med modellering av materialene i beregningsprogrammer som PLAXIS og GeoSuite.

4.6.3 Valg av skjærfasthetprofiler

For de ulike områdene A, B, C og D er det valgt et generelt anbefalt skjærfasthetprofil ut fra variasjonen i grunnforhold, jfr. Figur D27-D30 i Vedlegg D. Skjærfasthetprofilene er valgt konservativt og er tenkt benyttet ved mindre beregninger og som et grunnlag for å gjøre generelle vurderinger. Ved beregning av større inngrep og fundamenter må skjærfasthetsprofilet justeres spesifikt for de lokale forholdene.

Det forutsettes at det i de aktuelle beregningstilfellene gjøres vurderinger av om massene oppfører seg drenert eller udrenert ved belastning. Dette er særlig viktig for topplaget og for massene i del A som skiller seg ut fra området ved at de generelt er mer sandige og siltige. Der det er observert leire i dette området er denne lagdelt med en rekke lag av sand og silt innimellom lagene. Videre må også ev. reduksjon av fasthet i kvikkleirelag vurderes i hvert enkelt beregningstilfelle, se avsnitt 3.3. Konservativt valgte karakteristiske skjærfasthetprofiler som vist i Figur D27-D30 i vedlegg D, er også oppsummert i Tabell 4-7 og vist i Figur 4-17 for de ulike områdene. Skjærfastheten er generelt antatt konstant ned til et visst nivå, derunder lineært økende med dybden.

Tabell 4-7:	Karakteristiske skjærfasthetprofiler for udrenert skjærfasthet i de					
	ulike områdene. Profilene er ment til bruk for mindre beregninger.					
	For større beregninger må egne vurderinger gjøres.					

	Del A	Del B	Del C	Del D
Konstant	cu = 50kPa	cu = 35kPa	cu = 46kPa	cu = 60kPa
fasthet i øvre del	Til 8m dybde	Til 10m dybde	Til 10m dybde	Til 6m dybde
Lineær	3,10 kPa/m	2,875 kPa/m	3,85kPa/m	3,18kPa/m
økning i	180kPa ved	150kPa ved	200kPa ved	200kPa ved
dybden	50m dybde	50m dybde	50m dybde	50m dybde

Figur 4-17: Karakteristiske skjærfasthetprofiler for udrenert skjærfasthet i de ulike områdene. Profilene er ment til bruk for mindre beregninger. For større beregninger må egne vurderinger gjøres.

5 Referanser

- [1] NGI, Grunnundersøkelser Datarapport. Rapportnr. 20130642-01-R, Trondheim: Norges Geotekniske Institutt, 2014.
- [2] Multiconsult AS, Grunnundersøkelser Datarapport, Rapportnr. 415531-RIG-RAP-001, Trondheim: Multiconsult AS, 2013.
- [3] Multiconsult AS, Datarapport grunnundersøkelser, dagsferske prøver. Rapportnr.: 415531-RIG-RAP-003, Trondheim: Multiconsult AS, 2014.
- [4] NGU, «Gravimetri for kartlegging av løsmassemektighet i Gaulosen. Rapport nr 21.211,» 09.09.1991.
- [5] NGU, «Refleksjonsseismiske målinger på Melhus, Melhus kommune, Sørtrøndelag. Rapportnr 92.176,» 7.5.1992.
- [6] NGU, «Gråsteinen 5. Trondheim fra istid til nåtid-landskapshistorie og løsmasser.,» 1999.
- [7] K. Karlsrud, «Strength and deformation properties of Norwegian clays from laboratory tests on high quality block samples,» i *Bjerrums foredrag nr. 23*, 2014.
- [8] Norsk Geoteknisk Forening, «Veiledning for prøvetaking. Melding nr.: 11,» Norsk Geoteknisk Forening, Oslo, 2013.
- [9] G. Mesri og P. M. Godlewski, «Time- and Stress-Compressibility Interrelationship,» *Journal of the Geotechnical Engineering Division, ASCE*, pp. 417-430, 1977.
- [10] NGI, «Data base for tests on high quality block samples on clay: Summary of compressibility, strength and deformation parameters in relation to index properties. Rapportnr.: 20051014-00-1-R,» NGI, Oslo, 2012.
- [11] NIFS, «Rapport 14-2014, "En omforent anbefaling for bruk av anisotropifaktorer i prosjektering i norske leirer"».
- [12] K. Karlsrud, T. Lunne, D. Kort og S. Strandvik, «CPTU Correlations for Clays,» i Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, 2005.
- [13] NVE, «Veileder 7-2014, "Sikkerhet mot kvikkleireskred",» NVE, Oslo, 2014.

Vedlegg A - Oversiktskart Søra

Innhold

Figurer Figur A1

Oversiktskart Søra

Vedlegg B - Tolkede ødometerforsøk

Innhold

1	Metode CRS	4
2	Referanser	5

Tabeller

Tabell B1	Sammenstilling av ødometerforsøk, prøvekvalitet
Tabell B2	Sammenstilling av ødometerforsøk, tidligere terrengnivå
Tabell B3	Sammenstilling av ødometerforsøk, setningsparametere

Figurer	Utført av (lab): Beskrivelse	Ref.
Figur G1 – G3	NGI: CRS 2010. Dybde 9,40m.	[B2]
Figur G4 – G5	NGI: IL 2010. Dybde 9,38m.	[B2]
Figur G6 – G8	NGI: CRS 2010. Dybde 14,40m.	[B2]
Figur G9 – G11	NGI: CRS 2011. Dybde 10,40m.	[B2]
Figur G12 – G14	NGI: CRS 2011. Dybde 15,40m.	[B2]
Figur G15 – G17	NGI: CRS 2012. Dybde 12,63m.	[B2]
Figur G18 – G20	NGI: CRS 2012. Dybde 17,53m.	[B2]
Figur G21 – G22	NGI: IL 2012. Dybde 17,48m.	[B2]
Figur G23 – G25	NGI: CRS 2015. Dybde 9,4m.	[B2]
Figur G26 – G28	NGI: CRS 2017. Dybde 8,6m.	[B2]
Figur G29 – G31	NGI: CRS 2017. Dybde 14,58m.	[B2]
Figur G32 – G34	NGI: CRS 2018. Dybde 8,52m.	[B2]
Figur G35 – G37	NGI: CRS 2030. Dybde 7,48m.	[B2]
Figur G38 – G40	NGI: CRS 2036. Dybde 8,28m.	[B2]
Figur G41 – G43	NGI: CRS 2036. Dybde 10,48m.	[B2]
Figur G44 – G46	NGI: CRS 2036. Dybde 14,33m.	[B2]
Figur G47 – G49	NGI: CRS 2040. Dybde 16,63m.	[B2]
Figur G50 – G52	NGI: CRS 2040. Dybde 17,33m.	[B2]
Figur G53 – G55	NGI: CRS 2051. Dybde 7,41m.	[B2]
Figur G56 – G58	NGI: CRS 2058. Dybde 3,20m.	[B2]
Figur G59 – G61	NGI: CRS 2058. Dybde 8,43m.	[B2]
Figur G62 – G64	NGI: CRS 2058. Dybde 11,36m.	[B2]
Figur G65 – G67	NGI: CRS 2059. Dybde 4,30m.	[B2]

Figur G68 – G71	NGI: CRS 2059. Dybde 5,20m.	[B2]
Figur G72 – G74	NGI: CRS 2059. Dybde 9,50m.	[B2]
Tegning RIG-TEG-075.1-2	Multiconsult AS: CRS 1210. Dybde 4,45m.	[B3]
Tegning RIG-TEG-075.3-4	Multiconsult AS: CRS 1210. Dybde 9,40m.	[B3]
Tegning RIG-TEG-076.1-2	Multiconsult AS: CRS 1403. Dybde 10,32m.	[B3]
Tegning RIG-TEG-077.1-2	Multiconsult AS: CRS 1406. Dybde 10,60m.	[B3]
Tegning RIG-TEG-078.1-2	Multiconsult AS: CRS 1417. Dybde 6,65m.	[B3]
Tegning RIG-TEG-079.1-2	Multiconsult AS: CRS 1445. Dybde 3,40m.	[B3]
Tegning RIG-TEG-079.3-4	Multiconsult AS: CRS 1445. Dybde 8,50m.	[B3]
Tegning RIG-TEG-080.1-2	Multiconsult AS: CRS 1502. Dybde 10,04m.	[B4]
Tegning RIG-TEG-080.3-4	Multiconsult AS: CRS 1502. Dybde 14,88m.	[B4]
Tegning RIG-TEG-081.1-2	Multiconsult AS: CRS 1503. Dybde 8,32m.	[B4]
Tegning RIG-TEG-081.3-4	Multiconsult AS: CRS 1503. Dybde 16,65m.	[B4]
Tegning RIG-TEG-082.1-2	Multiconsult AS: CRS 1504. Dybde 10,35m.	[B4]
Tegning RIG-TEG-082.3-4	Multiconsult AS: CRS 1504. Dybde 16,55m.	[B4]
Tegning RIG-TEG-083.1-2	Multiconsult AS: CRS 1505. Dybde 13,55m.	[B4]
Tegning 2	NTNU: CRS 1502. Dybde 18,67m.	[B4]
Tegning 5	NTNU: CRS 1502. Dybde 9,99m.	[B4]
Tegning 9	NTNU: CRS 1502. Dybde 14,91m.	[B4]
Tegning 13	NTNU: CRS 1503. Dybde 12,50m.	[B4]
Tegning 16	NTNU: CRS 1503. Dybde 18,70m.	[B4]
Tegning 20	NTNU: CRS 1504. Dybde 12,48m.	[B4]
Tegning 23	NTNU: CRS 1504. Dybde 18,43m.	[B4]
Tegning 27	NTNU: CRS 1505. Dybde 18,73m.	[B4]
Unummerert	SVV: CRS 1502. Dybde 6,15m.	[B4]
Unummerert	SVV: CRS 1502. Dybde 9,9m.	[B4]
Unummerert	SVV: CRS 1502. Dybde 14,9m.	[B4]
Unummerert	SVV: CRS 1503. Dybde 14,45m.	[B4]
Unummerert	SVV: CRS 1504. Dybde 6,65m.	[B4]
Unummerert	SVV: CRS 1504. Dybde 15,55m.	[B4]
Figur B1	NGI: Plan. Tolkning, tidligere terrengnivå.	
Figur B2	NGI: Snitt. Tolkning, tidligere terrengnivå lang	S
	senterlinje.	
Figur B3	NGI: IL 2010. Dybde 9,38m. Trinn 1, 2, 3	
Figur B4	NGI: IL 2010. Dybde 9,38m. Trinn 4, 5, 6	
Figur B5	NGI: IL 2010. Dybde 9,38m. Trinn 7, 8	
Figur B6	NGI: IL 2010. Dybde 9,38m.	
Figur B7	NGI: IL 2012. Dybde 17,98m. Trinn 1, 2, 3	
Figur B8	NGI: IL 2012. Dybde 17,98m. Trinn 4, 5, 6	
Figur B9	NGI: IL 2012. Dybde 17,98m. Trinn 7, 8	
Figur B10	NGI: IL 2012. Dybde 17,98m.	
Figur B11	NGI: CRS 2010. Dybde 9,40m.	[B2]
Figur B12	NGI: CRS 2010. Dybde 14,40m.	[B2]
Figur B13	NGI: CRS 2011. Dybde 10,40m.	[B2]
Figur B14	NGI: CRS 2011. Dybde 15,40m.	[B2]
Figur B15	NGI: CRS 2012. Dybde 12,63m.	[B2]
Figur B16 – B17	NGI: CRS 2015. Dybde 9,40m.	[B2]

[B2]

[B2]

[B2]

[B2]

Figur B18 – B19 Figur B20 Figur B21 – B22 Figur B23 – B24 Figur B25 – B26

NGI: CRS 2017. Dybde 8,46m.	
NGI: CRS 2018. Dybde 8,52m.	
NGI: CRS 2051. Dybde 7,41m.	
NGI: CRS 2058. Dybde 11,36m.	
NGI: CRS 2059. Dybde 9,50m.	

1 Metode CRS

Prekonsolideringsspenning er tolket ved å finne middelverdien av spenninger i knekkpunkter på modulkurven, i henhold til Figur 10 presentert av Karlsrud (2014), ref. [B1]. Figuren er gjengitt i Figur B-1.

Tydelige ødometerforsøk er tolket og vist i figurer. Tolkede verdier er vist oppsummert i Tabell B1-B3.

Figur B-1 Definisjon på prekonsolingsspenning (Karlsrud, 2014, Figure 10).

For å hensynta aldringseffekter er tidligere terrengnivå regnet ut fra:

 $Z_{P} = Terreng - prøvedybde + \frac{p_{c}'}{\gamma' \cdot Aging - faktor}$

2 Referanser

- /B1/ Karlsrud (2014). Strength and deformation properties of Norwegian clays from laboratory tests on high quality block samples. Bjerrums Foredrag nr. 23, Norsk Geoteknisk Forening. Oslo, 2014.
- /B2/ NGI, "E6 Jaktøyen Storler. Grunnundersøkelser Datarapport". Rapportnr. 20130642-01. NGI, Trondheim, 2014
- /B3/ Multiconsult, "E6 Klett: Jaktøya-Dovrebanen. Grunnundersøkelser, datarapport." Rapportnr. 415531 - RIG-RAP-001. Multiconsult, Trondheim, 2013.
- /B4/ Multiconsult, "E6 Klett: Datarapport grunnundersøkelser, dagsferske prøver." Rapportnr. 415531 RIG-RAP-003. Multiconsult, Trondheim, 2014.

TABELL B1 SAMMENSTILLING AV ØDOMETERFORSØK, PRØVEKVALITET

		PRØVEIDE	NTIFISERING	6	KLASSIFISERING										TOLKNING AV DATA								PORETALLSENDRING PRØVEKVALITET					
-			1	1	T		1	1	r	1		r –	r		1	r	r	r		1	d\//\/	∆e/e-		r –		1		1
Borhull	Terreng	Forsøk	Dybde	Lab. utført	Profilnr	Wi	WP	W	lp	ŶΤ	ei	Leir-	St	p ₀ '	p _c '	OCR	Mo	M	M ₀ /M ₁	p'r	ved	ved	NGF11	p'r	p', /p',	M ₀ /M ₁	Kommentar	Samlet vurdering
nr.			-	av	langs ny			_			-	innhold					-	_			p _o '	p ₀ '						C C
			m		veglinje	%	%	%	%	kN/m3	-	%	-	kPa	kPa	-	MPa	MPa		kPa	%	-				-		
1210	39,30	CRS	4,45	MC	3290	31,0	21,0	31,5	10,5	19,5	0,85	31,0	9	50,1	100,0	2,00	-	-	-	-250,0	1,2	0,026	Veldig god	Negativ	-2,500	-	Ingen OC-platå	Dårlig
1210	39,30	CRS	9,40	MC	3290	31,0	19,0	23,0	4,0	19,0	0,85	48,0	138	94,6	220,0	2,33	6,0	1,0	6,0	200,0	2,5	0,054	Dårlig	Positiv	0,909	>2		Bra
1403	38,10	CRS	10,32	MC	3170	32,0	15,0	19,5	4,5	20,0	0,88	-	249	114,0	110,0	0,96	7,0	3,0	2,3	0,0	2,0	0,043	God	Recitiv	0,000	>2		Nøytral
1400	23.00	CRS	6 65	MC	2750	26.0	22.0	33.0	4,5	20.0	0,88	32.5	255	67.0	-	-	- 3,0	- 0,5	- 0,0	-200.0	4,0	0,085	Danig	Negativ	- 0,769	>2	Ingen OC-platå	Dårlig
1445	48.92	CRS	3,40	MC	4310	35.0	21.0	35.0	14.0	18.5	0,96	46.0	10	28.6	400.0	13.99	9.0	6.0	1.5	150.0	0,5	0,001	Veldia aod	Positiv	0.375	<2	ingen oo piata	Bra
1445	48,92	CRS	8,50	MC	4310	33,0	22,0	35,0	13,0	19,5	0,91	37,0	15	86,5	520,0	6,01	14,0	6,0	2,3	300,0	2,1	0,044	Dårlig	Positiv	0,577	>2		Bra
1502	40,80	CRS	6,15	SVV	3050	35,0	22,0	31,0	9,0		0,96	32,0	8	74,0	130,0	1,76	3,0	3,0	1,0	0,0	3,0	0,061	God	Null	0,000	<2	cv-verdier brukt for å finne pc	Nøytral
1502	40,80	CRS	9,90	SVV	3050	37,0	18,0	22,0	4,0	19,0	1,02	-	-	100,0	170,0	1,70	3,5	3,0	1,2	100,0	0,5	0,010	Veldig god	Positiv	0,588	<2	Rart forsøk	Dårlig
1502	40,80	CRS	9,99	NTNU	3050	37,0	18,5	22,5	4,0	19,5	1,02	36,0	-	105,0	160,0	1,52	3,4	1,7	2,0	120,0	4,5	0,089	Dårlig	Positiv	0,750	>2		Bra
1502	40,80	CRS	10,04	MC	3050	34,0	18,0	22,0	4,0	20,0	0,94	-	-	110,4	140,0	1,27	2,0	2,0	1,0	120,0	5,6	0,116	Därlig	Positiv	0,857	<2	cv-verdier brukt for å finne pc	Nøytral
1502	40,80	CRS	14,88	MC	3050	33,0	18,0	22,0	4,0	20,0	0,91	-	240	158,8	180,0	1,13	2,0	2,0	1,0	0,0	8,2	0,172	Veidig darlig	Null	0,000	<2	Ingen OC-plata	Darlig
1502	40,80	CRS	14,90	NTNU	3050	33.6	17,5	21,0	4.0	19,0	0,91	27.0	240	150,0	210.0	1,27	4,5 6.0	3,0	1,5	120.0	3,8 4 7	0,080	Dårlig	Positiv	0,421	<2		Bra
1502	40,80	CRS	18,67	NTNU	3050	33,2	15,5	19,1	3,6	19,5	0,91	34,0	96	187,0	250,0	1,34	5,0	3,5	1,4	50,0	6,5	0,136	Dårlig	Positiv	0,200	<2		Bra
1503	41,70	CRS	8,32	MC	3120	32,0	18,0	25,0	7,0	20,0	0,88	37,0	220	93,2	-	-	2,0	2,0	1,0	-	6,5	0,139		Positiv	-	<2	Prøven mister poretrykk og dårlig forsøk	Dårlig
1503	41,70	CRS	12,50	NTNU	3120	31,0	17,5	22,0	4,5	19,5	0,85	30,0	104	130,0	210,0	1,62	5,0	2,0	2,5	150,0	3,8	0,083	Dårlig	Positiv	0,714	>2		Bra
1503	41,70	CRS	14,45	SVV	3120	32,0	20,0	27,0	7,0	19,5	0,88	47,0	68	161,0	160,0	0,99	3,5	3,5	1,0	50,0	4,3	0,092	Dårlig	Positiv	0,313	<2		Bra
1503	41,70	CRS	16,65	MC	3120	33,0	18,0	23,5	5,5	19,5	0,91	33,0	138	184,0 205.0	184,0	1,00	2,5	2,5	1,0	-40,0	/,0 / 2	0,147	Veidig dårlig	Regativ	-0,217	<2		Nøytral
1503	36.30	CRS	6.65	SVV	3290	33.0	20.0	26.0	6.0	19.0	0.91	42.0	75	70,0	-	-	-		-	-20.0	4.8	0,103	Dany	Negativ	-	>2	Ingen OC-platå	Dårlig
1504	36,30	CRS	10,35	MC	3290	36,0	18,0	25,0	7,0	19,0	0,99	38,0	118	113,5	115,0	1,01	2,5	2,0	1,3	80,0	6,2	0,125	Dårlig	Positiv	0,696	<2		Nøytral
1504	36,30	CRS	12,48	NTNU	3290	32,0	19,7	23,5	3,8	19,5	0,88	36,0	59	130,0	200,0	1,54	4,0	3,0	1,3	60,0	7,0	0,150	Veldig dårlig	Positiv	0,300	<2		Bra
1504	36,30	CRS	15,55	SVV	3290	34,0	19,0	26,0	7,0	19,5	0,94	39,0	54	160,0	-	-	-	-	-	-80,0	5,0	0,103		Negativ	-	>2	Ingen OC-platå	Dårlig
1504	36,30	CRS	16,55	MC	3290	30,0	18,0	26,0	8,0	19,5	0,83	40,0	69	175,5	-	-	-	-	-	0,0	7,8	0,173		Null	-	>2	Ingen OC-plată	Dårlig
1504	36,30	CRS	18,43	NINU	3290	31,0	18,5	21,5	3,0	19,5	0,85	31,0	44	185,0	-	-	-	-	-	-160,0	6,0	0,130		Negativ	-	>2	Ingen OC-plata	Darlig
1505	32,90	CRS	18,55	NTNU	3290	28,0	20,0	26,0	4.0	19,5	0.82	25,0	40 74	145,5	-	-	-	-	-	-170.0	4,2 5.2	0,097		Negativ	-	>2	Ingen OC-plata	Dårlig
				-						- , -	- / -	.,.										- / -						, , , , , , , , , , , , , , , , , , ,
2010	34,25	IL	9,38	NGI	3420	30,0	18,0	24,0	6,0	19,5	0,83	-	250	119,0	-	-	-	-	-	-	4,3	0,095		Positiv	-	>2		
2010	34,25	CRS	9,40	NGI	3420	29,2	18,0	24,0	6,0	19,5	0,80	-	250	119,0	-	-	-	-	-	-250,0	4,3	0,097		Negativ	-	>2	Ingen OC-platå	Dårlig
2010	34,25	CRS	14,40	NGI	3420	34,1	18,0	26,0	8,0	19,5	0,94	-	75	167,0	-	-	-	-	-	-350,0	7,6	0,157		Negativ	-	>2	Ingen OC-plată	Dårlig
2011	33,09	CRS	10,40	NGI	3480	27,6	17,0	25,0 24.0	8,0	19,5	0,76	-	36	127,0	-	-	-	-	-	-650,0	5,2	0,121		Negativ	-	>2	Ingen OC-plata	Darlig
2011	38,21	CRS	12.63	NGI	3570	25,3	19,5	33.0	13.5	18,0	0,01	_	1	157.0	-	-	-	-	-	-350.0	3,5	0.088		Negativ	-	>2	Ingen OC-plata	Dårlig
2012	38,21	IL	17,48	NGI	3570	28,8	18,0	30,0	12,0	20,5	0,79	-	10	214,0	-	-	-	-	-	-	2,4	0,054		Positiv	-	>2		, , , , , , , , , , , , , , , , , , ,
2012	38,21	CRS	17,53	NGI	3570	28,9	18,0	30,0	12,0	20,5	0,79	-	10	214,0	-	-	-	-	-	-450,0	2,6	0,059		Negativ	-	>2	Ingen OC-platå	Dårlig
2015	33,52	CRS	9,40	NGI	3190	34,2	16,0	25,0	9,0	19,0	0,94	-	74	111,6	260,0	2,33	7,7	4,3	1,8	50,0	2,7	0,056	Dårlig	Positiv	0,192	<2		Bra
2017	53,33	CRS	8,46	NGI	4350	33,4	17,0	26,5	9,5	19,0	0,92	-	102	84,8	490,0	5,78	13,6	8,0	1,7	175,0	1,2	0,025	God	Positiv	0,357	<2		Bra
2017	53,33 72,56	CRS	14,58	NGI	4350	30,7	18,0	26,0	8,0	19,0	0,84	-	43	141,8 84.8	250.0	3,74	13,3	7,5 6.0	1,8	200,0	2,1	0,046	God	Positiv	0,377	<2	Marginalt OC-platå	Bra
2030	19,52	CRS	7,48	NGI	2350	20,7	19,0	29,0	10,0	21,5	0,57	-	1	85,7	-	-	-	-	-	-480,0	1,3	0,036	Dunig	Negativ	-	>2	Ingen OC-platå	Dårlig
2036	26,97	CRS	8,28	NGI	2910	23,8	19,0	31,0	12,0	20,0	0,65	27,2	1	101,4	-	-	-	-	-	-670,0	2,7	0,068		Negativ	-	>2	Ingen OC-platå	Dårlig
2036	26,97	CRS	10,48	NGI	2910	34,2	17,0	27,0	10,0	19,0	0,94	-	16	118,0	230,0	1,95	8,0	5,4	1,5	50,0	2,7	0,056	God	Positiv	0,217	<2		Bra
2036	26,97	CRS	14,33	NGI	2910	27,8	17,0	23,0	6,0	19,5	0,76	-	95	152,4	-	-	-	-	-	-380,0	3,5	0,081		Negativ	-	>2	Ingen OC-platå	Dårlig
2040	43,92	CRS	16,63	NGI	4140	38,2	20,0	43,0	23,0	18,5	1,05	33,7	5	168,0	510,0	3,04	10,0	7,5	1,3	180,0	2,7	0,053	Dárlig	Positiv	0,353	<2		Bra
2040	45,92	CRS	7 41	NGI	3170	34.8	20,0	37.5	17.5	19,0	0,95		9	91.0	210.0	2.31	5.5	4.0	1,5	50.0	22	0.045	God	Positiv	0,424	<2		Bra
2058	34,73	CRS	3,20	NGI	3290	23,2	19,4	36,9	17,5	19,8	0,64		1	53,0	-	-	-	-	-	-150,0	3,6	0,092	Dårlig	Negativ	-	>2	Ingen OC-platå	Did
2058	34,73	CRS	8,43	NGI	3290	32,5	19,1	32,7	13,6	19,0	0,89		8	100,8	-	-	-	-	-	-175,0	2,4	0,051	Dårlig	Negativ	-	>2	Ingen OC-platå	
2058	34,73	CRS	11,36	NGI	3290	28,7	18,0	26,3	8,3	19,2	0,79		39	130,6	290,0	2,22	10,0	6,4	1,6	125,0	2,2	0,050	Dårlig	Positiv	0,431	<2		Nøytral
2059	34,73	CRS	4,30	NGI	3290	26,6		-	<u> </u>	19,6	0,73		<u> </u>	64,8	-	-	-	-	-	-240,0	2,7	0,064	Dårlig	Negativ	-	>2	Ingen OC-platå	
2059	34,73	CRS	5,20	NGI	3290	19,7				19,6	0,54			75,1 116.3	- 240.0	- 2.06	- 8.4	- 7.6	- 11	-200,0	2,4	0,068	Darlig	Negativ	- 0.000	>2	Ingen OC-plata	Dårlig
2000	54,75	0110	3,50	NOI	5230	23,1				13,5	0,00			110,5	240,0	2,00	0,4	7,0	1,1	0,0	2,7	0,004	Danig	Null	0,000	~2	Warginat 00-plata	Danig
Flere av para	ametrene er ik	ke mulig å to	olke. Forsøker	ne er av varie	rende kvalitet	selv om po	retallsendri	ingen ikke r	ıødvendigv	is antyder d	årlig prøve	kvalitet.										Tolket i henhold	l til definisjon av Karls	rud (2014)	, Figur 10:			
W:		In-situ vanni	innhold			p'-		Referanse	spenning													20						
w _p		Utrullingsgre	ense			σ' _{ML1}		Laveste s	penning me	ed M _L -modu	I											AP.	······ Measu	ired				
WL		Flytegrense		or ML2 Høyeste spenning med Mmodul Prøvekvalitet i hht NGF-melding 11:																								
I _p		Plastisitetsir	ndeks, $I_p = W_L$	- w _p		k ₀		Permeabi	itet ved p'o	fra ødomete	erforsøk								1		г			$\overline{ 1}$				
γ _T		I otal romve	КІ аll ei= 2.75 *	wi		C _{v,oc}		Konsolide	ringskoeffis	sient i overk	onsolidert o	område				Volumtøy	ning ∆e/e0	1			L	M ₀		1	mo			
e _i S.		Sensitivitet	an, ei – 2.75 *	vvi		m _e		Modultal	for Ckurve	ent i norma	aikuiisullüe	n onnade			OCR	til utmerket	Dårlig	Veldig dårlig					1	1	· ·			
p ₀ '		In-situ vertik	al effektivspe	nning		dV/V		Volumtøy	ning ved pn						1-2	<0,04	0,07-0,14	>0,14										
OCR		Overkonsoli	deringsgrad	5		$\Delta e/e_0$		Endring i	poretallet, Z	Δe = εvol (1·	+ei) og ei =	2.75 * wi			2-4	<0,03	0,05-0,10	>0,10			ſ	M.						
Z _p		Beregnet tid	lligere terreng	nivå											4-6	<0,02	0,035-0,07	>0,07	J		L		σ' _{ML2} +	+50 kPa				
M ₀		Overkonsoli	deringsmodul				a al sta		- 1// 14 / 1	lation and first starts of												0 1	200 1 400 60	00 800) 1000			
ML		Laveste mo	aul			\angle_p = Terre	engkote - pr	øvedybde -	⊢ p _c :/(γ'*ald	ringstaktor)												-	d'		(kPa)			
m		Modultall				/ - aldringsfa	ktor =	9,5														p',	σ' _{ML1}	0	a (u)			
								.,-																				
	-				-	-		Ass. Jakab				-				-	-	-								_		

I		Volumtøy	ning ∆e/e0	
	OCR	Veldig god til utmerket	Dårlig	Veldig dårlig
	1-2	<0,04	0,07-0,14	>0,14
	2-4	<0,03	0,05-0,10	>0,10
	4-6	<0,02	0,035-0,07	>0,07

OPPDRAGSG PROSJEKT: SGIVER PROSJEKT NR:

Ing. A Aas Jal Trondheim AS E6 Jaktøyen - Storler 20130642

TABELL B2 SAMMENSTILLING AV ØDOMETERFORSØK, TIDLIGERE TERRENGNIVÅ

		PRØVEIDEN	ITIFISERING	3					KLASSIF	ISERING					TOLKNING	G AV DATA		PRØVEKVALITET	
Porbull	Torrong	Foreak	Dybdo	Lab utført	Profilm				In			Loir	6		n'	OCP	7	Kommontar	Samlet wurdering
nr.	Teneng	FUISØK	Dybde	av	langs ny	vv _i	WP 9/	WL 0/4	тр 0/	γ _T	ei	innhold	St	µ₀ kPo	μ _c kPo	UCK	Zp (mob)	Kommentar	Samet vurdering
1210	39,30	CRS	4,45	MC	3290	31,0	21,0	31,5	10,5	19,5	0,85	31,0	9	50,1	100,0	2,00	42	Ingen OC-platå	Dårlig
1210	39,30	CRS	9,40	MC	3290	31,0	19,0	23,0	4,0	19,0	0,85	48,0	138	94,6	220,0	2,33	46		Bra
1403	38,10	CRS	10,32	MC	3170	32,0	15,0	19,5	4,5	20,0	0,88	-	249	114,0	110,0	0,96	36		Nøytral
1406	38,50	CRS	10,60	MC	3040	32,0	16,0	20,5	4,5	19,0	0,88	- 22.5	253	115,0	130,0	1,13	38	Ingon OC plată	Bra
1417	48.92	CRS	3.40	MC	4310	35.0	22,0	35.0	14.0	18.5	0,72	46.0	10	28.6	- 400.0	- 13.99	- 76	ingen OC-plata	Bra
1445	48,92	CRS	8,50	MC	4310	33,0	22,0	35,0	13,0	19,5	0,91	37,0	15	86,5	520,0	6,01	80		Bra
1502	40,80	CRS	6,15	SVV	3050	35,0	22,0	31,0	9,0	10.0	0,96	32,0	8	74,0	130,0	1,76	44	cv-verdier brukt for å finne pc	Nøytral
1502	40,80	CRS	9,90	SVV	3050	37,0	18,0	22,0	4,0	19,0	1,02	-	-	100,0	170,0	1,70	44	Rart forsøk	Dárlig
1502	40,80	CRS	9,99	MC	3050	34.0	18,5	22,5	4,0	20.0	0.94	- 30,0	-	110.4	140.0	1,52	43	cy-verdier brukt for å finne pc	Nøvtral
1502	40,80	CRS	14,88	MC	3050	33,0	18,0	22,0	4,0	20,0	0,91	-	240	158,8	180,0	1,13	39	Ingen OC-platå	Dårlig
1502	40,80	CRS	14,90	SVV	3050	33,0	18,0	21,0	3,0	19,0	0,91	-	240	150,0	190,0	1,27	40		Nøytral
1502	40,80	CRS	14,91	NTNU	3050	33,6	17,5	21,5	4,0	19,5	0,92	27,0	240	150,0	210,0	1,40	42		Bra
1502	40,80	CRS	18,67	NTNU	3050	33,2	15,5	19,1	3,6	19,5	0,91	34,0	96	187,0	250,0	1,34	41	Browon mictor porotnukk og dårlig forcøk	Bra
1503	41,70	CRS	12,50	NTNU	3120	32,0	17,5	22,0	4,5	19,5	0,85	30,0	104	130,0	210,0	- 1,62	45		Bra
1503	41,70	CRS	14,45	SVV	3120	32,0	20,0	27,0	7,0	19,5	0,88	47,0	68	161,0	160,0	0,99	39		Bra
1503	41,70	CRS	16,65	MC	3120	33,0	18,0	23,5	5,5	19,5	0,91	33,0	138	184,0	184,0	1,00	39		Nøytral
1503	41,70	CRS	18,70	NTNU	3120	32,0	18,5	22,0	3,5	20,0	0,88	29,0	104	205,0	280,0	1,37	44		Bra
1504	36,30	CRS	10.35	MC	3290	36.0	20,0	26,0	7.0	19,0	0,91	42,0 38.0	118	113.5	- 115.0	- 1.01	- 35	ingen OC-plata	Nøvtral
1504	36,30	CRS	12,48	NTNU	3290	32,0	19,7	23,5	3,8	19,5	0,88	36,0	59	130,0	200,0	1,54	39		Bra
1504	36,30	CRS	15,55	SVV	3290	34,0	19,0	26,0	7,0	19,5	0,94	39,0	54	160,0	-	-	-	Ingen OC-platā	Dårlig
1504	36,30	CRS	16,55	MC	3290	30,0	18,0	26,0	8,0	19,5	0,83	40,0	69	175,5	-	-	-	Ingen OC-platå	Dårlig
1504	36,30	CRS	18,43	MC	3290	31,0 28,0	18,5 20.0	21,5	3,0 6,0	19,5	0,85	31,0 26.0	44	185,0	-	-	-	Ingen OC-plata	Darlig Dårlig
1505	32,90	CRS	18,73	NTNU	3290	29,9	21,2	25,2	4,0	19,5	0,82	25,0	74	190,0	-	-	-	Ingen OC-platå	Dårlig
2010	34,25	IL ODO	9,38	NGI	3420	30,0	18,0	24,0	6,0	19,5	0,83	-	250	119,0	-	-	-		D. I.I.
2010	34,25	CRS	9,40 14.40	NGI	3420	29,2 34.1	18,0	24,0	6,0 8.0	19,5	0,80	-	250 75	119,0	-	-	-	Ingen OC-plata	Darlig Dårlig
2010	33,09	CRS	10,40	NGI	3480	27,6	17,0	25,0	8,0	19,5	0,76	-	36	127,0	-	-	-	Ingen OC-plată	Dårlig
2011	33,09	CRS	15,40	NGI	3480	29,5	17,0	24,0	7,0	19,5	0,81	-	37	180,0	-	-	-	Ingen OC-platå	Dårlig
2012	38,21	CRS	12,63	NGI	3570	25,3	19,5	33,0	13,5	18,0	0,70	-	1	157,0	-	-	-	Ingen OC-platå	Dårlig
2012	38,21	IL CPS	17,48	NGI	3570	28,8	18,0	30,0	12,0	20,5	0,79	-	10	214,0	-	-	-	Ingon OC plată	Dårlig
2012	33,52	CRS	9,40	NGI	3190	34,2	16,0	25,0	9,0	19,0	0,79	-	74	111,6	260,0	2,33	- 44	ingen oc-plata	Bra
2017	53,33	CRS	8,46	NGI	4350	33,4	17,0	26,5	9,5	19,0	0,92	-	102	84,8	490,0	5,78	82		Bra
2017	53,33	CRS	14,58	NGI	4350	30,7	18,0	26,0	8,0	19,0	0,84	-	43	141,8	530,0	3,74	79		Bra
2018	72,56	CRS	8,52	NGI	4550	31,8	17,0	24,0	7,0	19,0 21.5	0,87	-	72	84,8 85.7	250,0	2,95	83	Marginalt OC-platà	Nøytral Dårlig
2036	26,97	CRS	8,28	NGI	2910	23,8	19,0	31,0	12,0	20,0	0,65	27,2	1	101,4	-	-	-	Ingen OC-plata	Dårlig
2036	26,97	CRS	10,48	NGI	2910	34,2	17,0	27,0	10,0	19,0	0,94	-	16	118,0	230,0	1,95	34		Bra
2036	26,97	CRS	14,33	NGI	2910	27,8	17,0	23,0	6,0	19,5	0,76	-	95	152,4	-	-	-	Ingen OC-platå	Dårlig
2040	43,92	CRS	16,63	NGI	4140	38,2	20,0	43,0	23,0	18,5	1,05	33,7	5	168,0	510,0	3,04	66 71		Bra
2040	45,92	CRS	7.41	NGI	3170	34.8	20,0	37.5	17.5	19,0	0,95	-	9	91.0	210.0	2.31	54		Bra
2058	34,73	CRS	3,20	NGI	3290	23,2	19,4	36,9	17,5	19,8	0,64		1	53,0	-	-	-	Ingen OC-platå	
2058	34,73	CRS	8,43	NGI	3290	32,5	19,1	32,7	13,6	19,0	0,89		8	100,8	-	-	-	Ingen OC-platå	
2058	34,73	CRS	11,36	NGI	3290	28,7	18,0	26,3	8,3	19,2	0,79		39	130,6	290,0	2,22	45		Nøytral
2059	34,73	CRS	4,30	NGI	3290	26,6				19,6	0,73			64,8 75.1	-	-	-	Ingen OC-plata	
2059	34,73	CRS	9,50	NGI	3290	29,1				19,5	0,80			116,3	240,0	2,06	43	Marginalt OC-platå	Dårlig
Flere av para	ametrene er ik	ke mulig å tol	ke. Forsøker	ne er av varier	ende kvalitet	t selv om poretallsendringen ikke nødvendigvis antyder dårlig prøvekvalitet.									Tolket i henh	old til definisjo	on av Karlsrud	d (2014), Figur 10:	
W:	w _i In-situ vanninnhold							Referanse	spennina						20 E				
Wp	w _p Utrullingsgrense							o' _{ML1} Laveste spenning med M _L -modul									····· Meas	ured	
WL		Flytegrense				σ' _{ML2}		Høyeste s	penning me	ed M _L -modu	I				2 15		Ideali	m	
I _p		Plastisitetsin	deks, $I_p = w_L$	• w _p		k ₀		Permeabil	itet ved p'o	fra ødomete	erforsøk					`		1	

 M_0

ML

^200 [′]

p'_r σ'_{ML1}

0

σ'_{ML2}+50 kPa

600

400

σ'_{ML2}

800

1000

σ'_a (kPa)

OPPDRAGSGIVER:

PROSJEKT:

PROSJEKT NR:

Dr. Ing. A Aas Jakobsen Trondheim AS E6 Jaktøyen - Storler 20130642

Modultall for C_v-kurve

Volumtøyning ved p₀'

9,5 kN/m³

1,4

Konsolideringskoeffisient i overkonsolidert område

Konsolideringskoeffisient i normalkonsolidert område

Endring i poretallet, $\Delta e = \epsilon vol (1+ei) og ei = 2.75 * wi$

TABELL B3 SAMMENSTILLING AV ØDOMETERFORSØK, SETNINGSPARAMETERE

PRØVEIDENTIFISERING KLASSIFISERING									TOLKNING AV DATA PRØVEKVALITET																		
Borhull nr.	Terreng	Forsøk	Dybde	Lab. utført av	Profilnr langs ny veglinie	w _i	WP	wL	lp %	γ _T kN/m3	e _i	Leir- innhold %	St	p₀' kPa	p₀' kPa	OCR	M₀ MPa	M _L MPa	M ₀ /M _L	m	m ₀	k ₀ m/år	C _{v,oc}	C _{v,NC}	m _{Cv} m²/(år*kPa)	Kommentar	Samlet vurdering
1210	39,30	CRS	4,45	MC	3290	31,0	21,0	31,5	10,5	19,5	0,85	31,0	9	50,1	100,0	2,00	-	-	-	17,3	-	-	12,0	12,0	0,013	Ingen OC-platå	Dårlig
1210	39,30	CRS	9,40	MC	3290	31,0	19,0	23,0	4,0	19,0	0,85	48,0	138	94,6	220,0	2,33	6,0	1,0	6,0	23,5	6,4	-	22,0	1,0	0,021		Bra
1403	38,10	CRS	10,32	MC	3170	32,0	15,0	19,5	4,5	20,0	0,88	-	249	114,0	110,0	0,96	7,0	3,0	2,3	15,5	15,5	-	9,0	4,0	0,014		Nøytral
1406	38,50	CRS	10,60	MC	3040	32,0	16,0	20,5	4,5	19,0	0,88	- 22.5	253	115,0 67.0	130,0	1,13	3,0	0,5	6,0	13,2	7,3	-	11,0	2,0	0,038		Bra
1417	48.92	CRS	3,40	MC	4310	35.0	22,0	35.0	14.0	18.5	0,72	46.0	10	28.6	400.0	13.99	9.0	6.0	1.5	16.1	12.0	-	14.0	7.0	0,019	ingen oc-piata	Bra
1445	48,92	CRS	8,50	MC	4310	33,0	22,0	35,0	13,0	19,5	0,91	37,0	15	86,5	520,0	6,01	14,0	6,0	2,3	17,0	9,6	-	82,0	33,0	-		Bra
1502	40,80	CRS	6,15	SVV	3050	35,0	22,0	31,0	9,0		0,96	32,0	8	74,0	130,0	1,76	3,0	3,0	1,0	17,9	17,9	-	18,0	13,5	0,021	cv-verdier brukt for å finne pc	Nøytral
1502	40,80	CRS	9,90	SVV	3050	37,0	18,0	22,0	4,0	19,0	1,02	-	-	100,0	170,0	1,70	3,5	3,0	1,2	18,4	10,5	-	11,0	4,0	0,014	Rart forsøk	Dårlig
1502	40,80	CRS	9,99	MC	3050	37,0	18,5	22,5	4,0	20.0	0.94	- 30,0	-	105,0	160,0	1,52	3,4	2.0	2,0	21.2	10.9	-	9,0 5,0	3,0	0,010	cy-verdier brukt for å finne po	Nøvtral
1502	40,80	CRS	14,88	MC	3050	33,0	18,0	22,0	4,0	20,0	0,91	-	240	158,8	140,0	1,13	2,0	2,0	1,0	11,1	10,0	-	6,0	4,0	0,042	Ingen OC-plată	Dårlig
1502	40,80	CRS	14,90	SVV	3050	33,0	18,0	21,0	3,0	19,0	0,91	-	240	150,0	190,0	1,27	4,5	3,0	1,5	18,8	13,2	-	20,0	7,5	0,018		Nøytral
1502	40,80	CRS	14,91	NTNU	3050	33,6	17,5	21,5	4,0	19,5	0,92	27,0	240	150,0	210,0	1,40	6,0	3,5	1,7	21,7	14,7	-	21,0	6,0	0,010		Bra
1502	40,80	CRS	18,67	NTNU	3050	33,2	15,5	19,1	3,6	19,5	0,91	34,0	96	187,0	250,0	1,34	5,0	3,5	1,4	18,4	14,1	-	16,0	8,0	0,007		Bra
1503	41,70	CRS	8,32	MC NTNU	3120	32,0	18,0	25,0	7,0	20,0	0,88	37,0	220	93,2 130.0	- 210.0	- 1.62	2,0	2,0	1,0	- 19.9	- 10.7	-	- 12.0	- 5.0	- 0.013	Prøven mister poretrykk og darlig forsøk	Darlig
1503	41,70	CRS	14,45	SVV	3120	32,0	20,0	27,0	7,0	19,5	0,88	47,0	68	161,0	160,0	0,99	3,5	3,5	1,0	19,1	15,2	-	12,0	8,0	0,019		Bra
1503	41,70	CRS	16,65	MC	3120	33,0	18,0	23,5	5,5	19,5	0,91	33,0	138	184,0	184,0	1,00	2,5	2,5	1,0	14,2	16,3	-	13,0	13,0	0,021		Nøytral
1503	41,70	CRS	18,70	NTNU	3120	32,0	18,5	22,0	3,5	20,0	0,88	29,0	104	205,0	280,0	1,37	7,0	5,5	1,3	22,9	15,3	-	16,0	9,0	0,013		Bra
1504	36,30	CRS	6,65	SVV	3290	33,0	20,0	26,0	6,0	19,0	0,91	42,0	75	70,0	-	-	-	-	-	18,5	-	-	6,0	6,0	0,014	Ingen OC-platå	Dårlig
1504	36,30	CRS	12,48	NTNU	3290	30,0	19,0	23,0	3.8	19,0	0,99	36,0	59	130.0	200.0	1,01	4.0	2,0	1,3	15.3	11,1	-	7.0	4,0	0,028		Bra
1504	36,30	CRS	15,55	SVV	3290	34,0	19,0	26,0	7,0	19,5	0,94	39,0	54	160,0	-	-	-	-	-	18,3	-	-	20,0	20,0	0,028	Ingen OC-platå	Dårlig
1504	36,30	CRS	16,55	MC	3290	30,0	18,0	26,0	8,0	19,5	0,83	40,0	69	175,5	-	-	-	-	-	16,7	-	-	5,5	5,5	0,009	Ingen OC-platå	Dårlig
1504	36,30	CRS	18,43	NTNU	3290	31,0	18,5	21,5	3,0	19,5	0,85	31,0	44	185,0	-	-	-	-	-	15,7	-	-	18,0	18,0	0,004	Ingen OC-platå	Dårlig
1505	32,90	CRS	13,55	MC	3290	28,0	20,0	26,0	6,0	19,5	0,77	26,0	40	145,5	-	-	-	-	-	20,0	-	-	20,0	20,0	0,020	Ingen OC-plata	Darlig
1505	52,50	0110	10,75	NINO	5230	23,3	21,2	20,2	4,0	13,5	0,02	20,0	74	130,0	-	_	-	-	-	13,0	_		200,0	200,0	0,000	ingen oo-piata	Danig
2010	34,25	IL	9,38	NGI	3420	30,0	18,0	24,0	6,0	19,5	0,83	-	250	119,0	-	-	-	-	-	-	-	-	-	-	-		
2010	34,25	CRS	9,40	NGI	3420	29,2	18,0	24,0	6,0	19,5	0,80	-	250	119,0	-	-	-	-	-	26,0	-	0,095	39,0	39,0	0,045	Ingen OC-platå	Dårlig
2010	34,25	CRS	14,40	NGI	3420	34,1	18,0	26,0	8,0	19,5	0,94	-	75	167,0	-	-	-	-	-	22,5	-	0,032	8,8	8,8	0,016	Ingen OC-plată	Dårlig
2011	33,09	CRS	10,40	NGI	3480	27,6	17,0	25,0	7.0	19,5	0,76	-	30	127,0	-	-	-	-	-	27,5	-	0.029	-	-	-	Ingen OC-plata	Darlig
2012	38,21	CRS	12,63	NGI	3570	25,3	19,5	33,0	13,5	18,0	0,70	-	1	157,0	-	-	-	-	-	24,0	-	0,013	6,9	6,9	0,004	Ingen OC-platå	Dårlig
2012	38,21	IL	17,48	NGI	3570	28,8	18,0	30,0	12,0	20,5	0,79	-	10	214,0	-	-	-	-	-	-	-	-	-	-	-		
2012	38,21	CRS	17,53	NGI	3570	28,9	18,0	30,0	12,0	20,5	0,79	-	10	214,0	-	-	-	-	-	18,5	-	0,063	63,0	63,0	0,071	Ingen OC-platå	Dårlig
2015	33,52	CRS	9,40	NGI	3190	34,2	16,0	25,0	9,0	19,0	0,94	-	/4 102	111,6 84.8	260,0	2,33	13.6	4,3	1,8	20,3	15,4	0,021	10,1	4,7	0,011		Bra
2017	53,33	CRS	14,58	NGI	4350	30,7	18,0	26,0	8,0	19,0	0,84	-	43	141,8	530,0	3,74	13,3	7,5	1,8	17,3	12,2	0,035	28,4	12,6	0,048		Bra
2018	72,56	CRS	8,52	NGI	4550	31,8	17,0	24,0	7,0	19,0	0,87	-	72	84,8	250,0	2,95	6,6	6,0	1,1	18,3	18,3	0,028	12,0	8,2	0,003	Marginalt OC-platå	Nøytral
2030	19,52	CRS	7,48	NGI	2350	20,7	19,0	29,0	10,0	21,5	0,57	-	1	85,7	-	-	-	-	-	42,3	-	0,035	37,8	37,8	0,058	Ingen OC-platå	Dårlig
2036	26,97	CRS	8,28	NGI	2910	23,8	19,0	31,0	12,0	20,0	0,65	27,2	1	101,4	- 220.0	- 1.05	-	-	- 15	20,4	- 17 9	0,019	126,0	126,0	0,008	Ingen OC-plată	Dårlig
2036	26,97	CRS	10,48	NGI	2910	27.8	17,0	27,0	6.0	19,0	0,94	-	95	152.4	- 230,0	1,95	- 0,0	- 5,4	-	19,0	-	0.025	12,6	0,2	0.012	Ingen OC-platå	Dårlig
2040	43,92	CRS	16,63	NGI	4140	38,2	20,0	43,0	23,0	18,5	1,05	33,7	5	168,0	510,0	3,04	10,0	7,5	1,3	15,6	11,4	0,013	7,9	4,1	0,002		Bra
2040	43,92	CRS	17,33	NGI	4140	33,9	20,0	42,0	22,0	19,0	0,93	33,7	5	178,0	590,0	3,31	14,0	7,2	1,9	16,7	11,1	0,022	22,1	9,5	0,005		Bra
2051	45,76	CRS	7,41	NGI	3170	34,8	20,0	37,5	17,5	19,0	0,96	-	9	91,0	210,0	2,31	5,5	4,0	1,4	20,8	17,6	0,631	-	-	-		Bra
2058	34,73	CRS	3,20	NGI	3290	23,2	19,4	36,9	17,5	19,8	0,64	+	1	53,0	-	-	-	-	-	19,5	-	0,019	9,5	9,5	0,014	Ingen OC plată	
2058	34,73	CRS	0,43 11.36	NGI	3290	28.7	18.0	26.3	8.3	19,0	0.79	1	8 39	130.6	290.0	2.22	- 10.0	6.4	- 1.6	21.8	13.3	0,032	39.4	14.2	0,018	ingen OC-piata	Nøvtral
2059	34,73	CRS	4,30	NGI	3290	26,6	.0,0	20,0	5,5	19,6	0,73			<u>6</u> 4,8	-		-	-	-	22,5	-	0,022	7,6	7,6	0,010	Ingen OC-platå	
2059	34,73	CRS	5,20	NGI	3290	19,7				19,6	0,54			75,1	-	-	-	-	-	39,1	-	0,007	3,2	3,2	0,319	Ingen OC-platå	
2059	34,73	CRS	9,50	NGI	3290	29,1				19,5	0,80			116,3	240,0	2,06	8,4	7,6	1,1	21,4	25,0	0,016	8,8	7,6	0,006	Marginalt OC-platå	Dårlig
<u> </u>	1	1	1	L	1	1	1	1	I	1	I	1	1	I	1	1	1	1	1	1	1	L	1	1	1		1
Flere av para	ere av parametrene er ikke mulig å tolke. Forsøkene er av varierende kvalitet selv om poretallsendringen ikke nødvendigvis antyder dårlig prøvekvalitet. Tolket i henhold til definisjon av Karlsrud (2014), Figur 10:																										

p'r

 σ^{\prime}_{ML1}

σ' _{ML2}	Høyeste spenning med ML-modul
k _o	Permeabilitet ved p'0 fra ødometerforsøk
C _{v,OC}	Konsolideringskoeffisient i overkonsolidert område
C _{v,NC}	Konsolideringskoeffisient i normalkonsolidert område
m _{cv}	Modultall for C _v -kurve
dV/V	Volumtøyning ved p ₀ '
$\Delta e/e_0$	Endring i poretallet, $\Delta e = \epsilon vol (1+ei) og ei = 2.75 * wi$
Z _p = Terrengkote - pr	<pre>øvedybde + p_c'/(γ^{**}aldringsfaktor)</pre>
γ'=	9,5 kN/m ³
aldringsfaktor =	1,4
	Aca Jakahaan Trandhaim AS

Referansespenning

Laveste spenning med M_L-modul

OPPDRAGSGIVER: PROSJEKT: PROSJEKT NR:

Dr. Ing. A Aas Jak obsen Trondheim AS E6 Jaktøyen - Storler 20130642

H:\LABDATA\2013\20130642\Oedom\2010-7-A-3 Lin(CRS2567).grf

H:\LABDATA\2013\20130642\Oedom\2010-7-A-3 Lin2(CRS2567).grf

H:\LABDATA\2013\20130642\Oedom\2010-7-A-3 Log(CRS2567).grf

H:\LABDATA\2013\20130642\Oedom\IL\2010-7-A-2 IL Lin.grf

H:\LABDATA\2013\20130642\Oedom\IL\2010-7-A-2 IL Log.grf

H:\LABDATA\2013\20130642\Oedom\2010-9-A-1 Lin(CRS2566).grf

H:\LABDATA\2013\20130642\Oedom\2010-9-A-1 Lin2(CRS2566).grf

H:\LABDATA\2013\20130642\Oedom\2010-9-A-1 Log(CRS2566).grf

H:\LABDATA\2013\20130642\Oedom\2011-8-A-2 Lin(CRS2562).grf

H:\LABDATA\2013\20130642\Oedom\2011-8-A-2 Lin2(CRS2562).grf

H:\LABDATA\2013\20130642\Oedom\2011-8-A-2 Log(CRS2562).grf

H:\LABDATA\2013\20130642\Oedom\2011-9-A-2 Lin (CRS2569).grf

H:\LABDATA\2013\20130642\Oedom\2011-9-A-2 Lin2 (CRS2569).grf

H:\LABDATA\2013\20130642\Oedom\2011-9-A-2 Log(CRS2569).grf

H:\LABDATA\2013\20130642\Oedom\2012-11-A-2 Lin (CRS2551).grf

H:\LABDATA\2013\20130642\Oedom\2012-11-A-2 Lin2 (CRS2551).grf

H:\LABDATA\2013\20130642\Oedom\2012-11-A-2 Log (CRS2551).grf

H:\LABDATA\2013\20130642\Oedom\2012-12-A-4 Lin (CRS2552).grf

H:\LABDATA\2013\20130642\Oedom\2012-12-A-4 Lin2 (CRS2552).grf

H:\LABDATA\2013\20130642\Oedom\2012-12-A-4 Log(CRS2552).grf

H:\LABDATA\2013\20130642\Oedom\IL\2012-12-A-4 IL Lin.grf

H:\LABDATA\2013\20130642\Oedom\IL\2012-12-A-4 IL Log.grf

H:\LABDATA\2013\20130642\Oedom\2015-2-a-2 Lin (CRS2568).grf

H:\LABDATA\2013\20130642\Oedom\2015-2-a-2 Lin2 (CRS2568).grf

H:\LABDATA\2013\20130642\Oedom\2015-2-a-2 Log(CRS2568).grf

H:\LABDATA\2013\20130642\Oedom\2017-2-A-2 Lin (CRS2616).grf

H:\LABDATA\2013\20130642\Oedom\2017-2-A-2 Lin2 (CRS2616).grf

H:\LABDATA\2013\20130642\Oedom\2017-2-A-2 Log(CRS2616).grf

H:\LABDATA\2013\20130642\Oedom\2017-4-A-1 Lin(CRS2613).grf

H:\LABDATA\2013\20130642\Oedom\2017-4-A-1 Lin2 (CRS2613).grf

H:\LABDATA\2013\20130642\Oedom\2017-4-A-1 Log(CRS2613).grf

H:\LABDATA\2013\20130642\Oedom\2018-3-A-3 Lin(CRS2617).grf

H:\LABDATA\2013\20130642\Oedom\2018-3-A-3 Lin2(CRS2617).grf

H:\LABDATA\2013\20130642\Oedom\2018-3-A-3 Log(CRS2617).grf

H:\LABDATA\2013\20130642\Oedom\2030-3-A-3 Lin2 (CRS2620).grf

H:\LABDATA\2013\20130642\Oedom\2030-3-A-3 Log(CRS2620).grf

H:\LABDATA\2013\20130642\Oedom\2036-4-A-3 Lin2 (CRS2612).grf

H:\LABDATA\2013\20130642\Oedom\2036-4-A-3 Log(CRS2612).grf

H:\LABDATA\2013\20130642\Oedom\2036-5-A-3 Lin (CRS2611).grf

H:\LABDATA\2013\20130642\Oedom\2036-5-A-3 Lin2 (CRS2611).grf

H:\LABDATA\2013\20130642\Oedom\2036-5-A-3 Log(CRS2611).grf

H:\LABDATA\2013\20130642\Oedom\2036-7-A-1 Lin(CRS2610).grf

H:\LABDATA\2013\20130642\Oedom\2036-7-A-1 Lin2(CRS2610).grf

H:\LABDATA\2013\20130642\Oedom\2036-7-A-1 Log(CRS2610).grf

H:\LABDATA\2013\20130642\Oedom\2040-7-A-3 Lin (CRS2615).grf

H:\LABDATA\2013\20130642\Oedom\2040-7-A-3 Lin2 (CRS2615).grf

H:\LABDATA\2013\20130642\Oedom\2040-7-A-3 Log(CRS2615).grf

H:\LABDATA\2013\20130642\Oedom\2040-8-A-1 Lin (CRS2614).grf

H:\LABDATA\2013\20130642\Oedom\2040-8-A-1 Lin2 (CRS2614).grf

H:\LABDATA\2013\20130642\Oedom\2040-8-A-1 Log(CRS2614).grf

H:\LABDATA\2013\20130642\Oedom\2051-3-A-2 Lin (CRS2622).grf

H:\LABDATA\2013\20130642\Oedom\2051-3-A-2 Lin2 (CRS2622).grf

H:\LABDATA\2013\20130642\Oedom\2051-3-A-2 Log(CRS2622).grf

H:\LABDATA\2013\20130642\Oedom\2058-4-A-1 Lin (CRS2740).grf

H:\LABDATA\2013\20130642\Oedom\2058-4-A-1 Lin2 (CRS2740).grf

H:\LABDATA\2013\20130642\Oedom\2058-4-A-1 Log(CRS2740).grf

H:\LABDATA\2013\20130642\Oedom\2058-8-A-1 Lin(CRS2742).grf

H:\LABDATA\2013\20130642\Oedom\2058-8-A-1 Lin2(CRS2742).grf

H:\LABDATA\2013\20130642\Oedom\2058-8-A-1 Log(CRS2742).grf

H:\LABDATA\2013\20130642\Oedom\2058-11-A-2 Lin(CRS2739).grf

H:\LABDATA\2013\20130642\Oedom\2058-11-A-2 Lin2(CRS2739).grf

H:\LABDATA\2013\20130642\Oedom\2058-11-A-2 Log(CRS2739).grf

H:\LABDATA\2013\20130642\Oedom\2059-4-A-1 Lin(CRS2744).grf

H:\LABDATA\2013\20130642\Oedom\2059-4-A-1 Lin2(CRS2744).grf

H:\LABDATA\2013\20130642\Oedom\2059-4-A-1 LOG(CRS2744).grf

H:\LABDATA\2013\20130642\Oedom\2059-5-A-1 Lin(CRS2745).grf

H:\LABDATA\2013\20130642\Oedom\2059-5-A-1 Lin(CRS2745).grf

H:\LABDATA\2013\20130642\Oedom\2059-5-A-1 Lin2(CRS2745).grf

H:\LABDATA\2013\20130642\Oedom\2059-5-A-1 Log(CRS2745).grf

H:\LABDATA\2013\20130642\Oedom\2059-11-A-1 Lin (CRS2743).grf

H:\LABDATA\2013\20130642\Oedom\2059-11-A-1 Lin2 (CRS2743).grf

H:\LABDATA\2013\20130642\Oedom\2059-11-A-1 Log(CRS2743).grf

		-	-	-	-
		Dato	Tegn.	Kontr.	Godkj.
		Status –			
		Original format A3			
		Tegningens filnavn -			
		Målestokk 1:5000		NG	
	Konstr./Tegnet	Kontrollert	Godkjent		
014	VGS	КК		AKL	
	Tegningsnr.		Rev.		
0642	B.1			-	

P:\2013\06\20130642\Laboratorium\Oedom_IL\IL\2010-kryptoyning.grf

P:\2013\06\20130642\Laboratorium\Oedom_IL\IL\2010-kryptoyning.grf

P:\2013\06\20130642\Laboratorium\Oedom_IL\IL\2010-kryptoyning.grf

P:\2013\06\20130642\Laboratorium\Oedom_IL\IL\2010-pc-rs.grf

P:\2013\06\20130642\Laboratorium\Oedom_IL\IL\2012-kryptoyning.grf

P:\2013\06\20130642\Laboratorium\Oedom_IL\IL\2012-kryptoyning.grf

P:\2013\06\20130642\Laboratorium\Oedom_IL\IL\2012-kryptoyning.grf

P:\2013\06\20130642\Laboratorium\Oedom_IL\IL\2012-pc-rs.grf

Ref.

Dokumentnr.: 20130642-09-R Dato: 2014-11-07 Rev.nr.: 1/2015-03-13 Vedlegg C, Side 1

Vedlegg C - Treaks-tolkning

Tabeller

Tabell C1Sammenstilling av treaksialforsøk m/ tolkning.

Figurer

Figur F1	Tolkning av stivhet, CAUA 2010, 9,40m	[C1]
Figur F3	Tolkning av stivhet, CAUA 2011, 10,40m	[C1]
Figur F5	Tolkning av stivhet, CAUA 2012, 17,40m	[C1]
Figur F9	Tolkning av stivhet, CAUA 2015, 9,55m	[C1]
Figur F11	Tolkning av stivhet, CAUA 2015, 16,40m	[C1]
Figur F15	Tolkning av stivhet, CAUA 2018, 8,25m	[C1]
Figur F19	Tolkning av stivhet, CAUA 2018, 11,40m	[C1]
Figur F23	Tolkning av stivhet, CAUA 2030, 7,22m	[C1]
Figur F27	Tolkning av stivhet, CAUA 2036, 8,40m	[C1]
Figur F31	Tolkning av stivhet, CAUA 2036, 10,40m	[C1]
Figur F35	Tolkning av stivhet, CAUA 2036, 14,40m	[C1]
Figur F39	Tolkning av stivhet, CAUA 2040, 16,40m	[C1]
Figur F41	Tolkning av stivhet, CAUA 2040, 17,40m	[C1]
RIG-TEG-085.1	Avlesning skjærfasthet, CAUA, 1403, 4.30m	[C2]
RIG-TEG-085.4	Avlesning skjærfasthet, CAUA, 1403, 10,40m	[C2]
RIG-TEG-085.7	Avlesning skjærfasthet, CAUA, 1403, 10,50m	[C2]
RIG-TEG-086.1	Avlesning skjærfasthet, CAUA, 1406, 6,40m	[C2]
RIG-TEG-086.4	Avlesning skjærfasthet, CAUA, 1406, 10,40m	[C2]
RIG-TEG-086.7	Avlesning skjærfasthet, CAUA, 1406, 10,50m	[C2]
RIG-TEG-087.1	Avlesning skjærfasthet, CAUA, 1417, 6,20m	[C2]
RIG-TEG-088.1	Avlesning skjærfasthet, CAUA, 1431, 12,35m	[C2]
RIG-TEG-088.7	Avlesning skjærfasthet, CAUA, 1431, 12,40m	[C2]
RIG-TEG-089.1	Avlesning skjærfasthet, CAUA, 1502, 9,98m	[C3]
RIG-TEG-089.5	Avlesning skjærfasthet, CAUA, 1502, 14,91m	[C3]
RIG-TEG-090.1	Avlesning skjærfasthet, CAUA, 1503, 8,25m	[C3]
RIG-TEG-090.5	Avlesning skjærfasthet, CAUA, 1503, 16,55m	[C3]
RIG-TEG-091.1	Avlesning skjærfasthet, CAUA, 1504, 10,10m	[C3]
RIG-TEG-091.5	Avlesning skjærfasthet, CAUA, 1504, 16,65m	[C3]
RIG-TEG-092.1	Avlesning skjærfasthet, CAUA, 1505, 18,64m	[C3]
Tegn. NTNU	Avlesning skjærfasthet, CAUA, 1502, 6,35m	[C3]
Tegn. NTNU	Avlesning skjærfasthet, CAUA, 1502, 9,90m	[C3]

Dokumentnr.: 20130642-09-R Dato: 2014-11-07 Rev.nr.: 1/2015-03-13 Vedlegg C, Side 2

Tegn. NTNU	Avlesning skjærfasthet, CAUA, 1502, 14,90m	[C3]
Tegn. NTNU	Avlesning skjærfasthet, CAUA, 1503, 6,55m	[C3]
Tegn. NTNU	Avlesning skjærfasthet, CAUA, 1503, 14,55m	[C3]
Tegn. NTNU	Avlesning skjærfasthet, CAUA, 1504,	[C3]
C	6,55m og 15,55m.	
Figur 30	Avlesning skjærfasthet, CAUA, 1502,	[C3]
-	9,99m, 14,91m og 18,59m.	
Figur 31	Avlesning skjærfasthet, CAUA, 1503	[C3]
	12,10m og 18,63m.	
Figur 32	Avlesning skjærfasthet, CAUA, 1504,	[C3]
	12,62m og 18,51m.	
Figur 28	Avlesning skjærfasthet, CAUA, 1505, 18,64m	[C3]
Figur F2	Avlesning skjærfasthet, CAUA, 2010, 9,40m	[C1]
Figur F4	Avlesning skjærfasthet, CAUA, 2011, 10,40m	[C1]
Figur F6	Avlesning skjærfasthet, CAUA, 2012, 17,40m	[C1]
Figur F10	Avlesning skjærfasthet, CAUA, 2015, 9,55m	[C1]
Figur F12	Avlesning skjærfasthet, CAUA, 2015, 16,40m	[C1]
Figur F16	Avlesning skjærfasthet, CAUA, 2018, 8,25m	[C1]
Figur F20	Avlesning skjærfasthet, CAUA, 2018, 11,40m	[C1]
Figur F24	Avlesning skjærfasthet, CAUA, 2030, 7,22m	[C1]
Figur F28	Avlesning skjærfasthet, CAUA, 2036, 8,40m	[C1]
Figur F32	Avlesning skjærfasthet, CAUA, 2036, 10,40m	[C1]
Figur F36	Avlesning skjærfasthet, CAUA, 2036, 14,40m	[C1]
Figur F40	Avlesning skjærfasthet, CAUA, 2040, 16,40m	[C1]
Figur F44	Avlesning skjærfasthet, CAUA, 2040, 17,40m	[C1]

Dokumentnr.: 20130642-09-R Dato: 2014-11-07 Rev.nr.: 1/2015-03-13 Vedlegg C, Side 3

Referanser

- /C1/ NGI, *E6 Jaktøyen–Storler, Grunnundersøkelser Datarapport.* Rapportnr. 20130642-01-R. NGI, Trondheim, 2014.
- /C2/ Multiconsult AS, E6 Jaktøya-Dovrebanen. Grunnundersøkelser, Datarapport, Rapportnr. 415531-RIG-RAP-001. Multiconsult AS, Trondheim, 2013.
- /C3/ Multiconsult AS, E6 Klett, Datarapport, grunnundersøkelser, dagferske prøver, Rapportnr. 415531-RIG-RAP-003. Multiconsult AS, Trondheim, 2014

TABELL C1

	PRØVEID	ENTIFISERI	NG			KLASSIFISERING							KONSOLIDERING								STIVHETSEGENSKAPER							STYRKEEGENSKAPER								
Borpun	t Prøv	e Type	Dybde	Lab	Wi	Wp	wı	I _p	Leir-	Ytot	St	p'ov	σ' _{ac}	σ'rc	K₀'	dV/V₀	∆e/e₀	OCR	Prøve	τ0	τ ₅₀	ε _{a,50}	E ₅₀	E ₅₀ /S _{u, A}	S _{u,D}	G ₅₀ (G ₅₀ /S _{u, D}	τ_{peak}	ε _{a,peak}	τ _{1,%}	S _{u,A}	τ _{peak} /σ' _{ac}	s _{u,A} /σ' _{ac}	α ₁	α_2	α_3
nr.	diame	er torsøk		Uttørt					innn.							vea n'	vea n'		NGE							(V _u =0,5)								(m=0,60)	(11=0,75) (1	m=0,90)
	mm	-	т	uv	%	%	%	%	%	kN/m ³	-	kPa	kPa	kPa	-	Р0 %	-	-	-	kPa	kPa	%	MPa			MPa		kPa	%	kPa	kPa	-	-	-	-	_
1403	54	CAUA	4,30	MC	29,0	20,5	30,0	9,5	29,5	20,0	12	49,0	49,2	39,5	0,80	2,53	0,057	1,00	God	-	-	-	-	-	-	-	-	30,0	2,00	27,5	30,0	0,61	0,61	0,61	0,61	0,61
1403	54	CAUA	10,40	MC	29,0	15,0	19,5	4,5	-	20,0	249	106,0	110,3	88,7	0,80	3,29	0,074	1,14	Dårlig	-	-	-	-	-	-	-	-	42,0	1,20	41,5	42,0	0,38	0,38	0,35	0,35	0,34
1403	54	CAUA	10,50	MC	29,0	15,0	19,5	4,5	-	20,0	249	106,0	109,4	78,0	0,71	5,43	0,122	1,14	Dårlig	-	-	-	-	-	-	-	-	41,0	3,00	39,0	41,0	0,37	0,37	0,35	0,34	0,33
1406	54	CAUA	6,40	MC	34,0	21,5	30,5	9,0	30,0	20,0	19	78,0	56,1	35,7	0,64	1,52	0,031	1,00	Veldig god	-	-	-	-	-	-	-	-	34,0	1,60	34,0	34,0	0,61	0,61	0,61	0,61	0,61
1406	54	CAUA	10,40	MC	32,0	16,0	20,5	4,5	-	19,5	253	114,0	105,9	83,7	0,79	4,03	0,086	1,13	Dårlig	-	-	-	-	-	-	-	-	38,0	0,80	37,5	38,0	0,36	0,36	0,33	0,33	0,32
1406	54	CAUA	10,50	MC	32,0	16,0	20,5	4,5	-	19,5	253	115,0	109,7	87,6	0,80	2,81	0,060	1,13	God	-	-	-	-	-	-	-	-	38,0	0,80	38,0	38,0	0,35	0,35	0,32	0,32	0,31
1406	54	CAUP	6 20	MC	32,0	10,0	20,5	4,5	-	19,5	253	64.0	62.4	50.2	0,74	4,78	0,102	1,13	Voldia god	-	-	-	-	-	-	-	-	19,0	4,00	17,5	32.0	0,24	0.51	0,23	0,22	0,22
1417	54	CAUA	7 40	MC	26,0	22,0	33.0	9.0	- 52,5	20,0	2	87.5	66.2	42 1	0,64	1 49	0,022	1,00	Veldig god	-	-	-	-		-	-	-	44 0	1,50	31.0	36.0	0.67	0.54	0.67	0.67	0.67
1431	54	CAUP	12,35	MC	31,0	18,0	24,0	6,0	-	19,5	224	137,0	123,5	93,5	0,76	2,58	0,056	1,00	God	-	-	-	-		-	-	-	26,0	1,50	24,5	00,0	0,21	-1	0,21	0,21	0,21
1431	54	CAUA	12,40	MC	27,0	18,0	24,0	6,0	-	20,0	224	137,5	131,4	90,5	0,69	2,39	0,056	1,00	God	-	-	-	-	-	-	-	-	54,0	1,50	52,0	54,0	0,41	0,41	0,41	0,41	0,41
1502	75	CAUA	6,35	SVV	34,0	22,0	31,0	9,0	32,0	19,0	8	76,0	74,5	59,8	0,80	3,85	0,080	1,49	Dårlig	-	-	-	-	-	-	-	-	32,0	8,00	28,0	31,0	0,43	0,42	0,34	0,32	0,30
1502	Blok	CAUA	9,90	SVV	33,0	18,0	22,0	4,0	36,0	19,0	-	113,0	110,8	88,7	0,80	2,62	0,055	1,30	God	-	-	-	-	-	-	-	-	45,0	1,00	45,0	45,0	0,41	0,41	0,35	0,33	0,32
1502	Blokk	CAUA	9,98	MC	34,0	18,0	22,0	4,0	36,0	20,0	-	114,0	107,6	85,8	0,80	4,40	0,091	1,20	Dårlig	-	-	-	-	-	-	-	-	36,0	0,80	36,0	36,0	0,33	0,33	0,30	0,29	0,28
1502	Blokk	CAUA	9,99	NTNU	31,0	18,5	22,5	4,0	36,0	19,5	-	114,0	110,0	88,0	0,80	3,40	0,074	1,32	Dårlig	-	-	-	-	-	-	-	-	49,0	1,30	48,0	49,0	0,45	0,45	0,38	0,36	0,35
1502	BIOK		14,90	SVV	33,0	18,0	22,0	4,0	27,0	19,0	240	166,0	160,3	128,4	0,80	2,66	0,056	1,15	God	-	-	-	-	-	-	-	-	64,0 52.0	1,00	64,0	64,0	0,40	0,40	0.37	0,36	0,35
1502	Blokk		14,91	NTNU	33,0	18.5	22,0	4,0	27,0	20,0	240	166.0	150,0	120,0	0,80	4,22	0,089	1,10	Darlig		-				-	-	-	68.0	1 10	68.0	68.0	0,33	0,33	0.32	0,31	0,31
1502	75	CAUA	18.59	NTNU	34.0	15.5	19.0	3.5	34.0	20.0	96	204.0	196.0	157.0	0.80	6.10	0,126	1.24	Dårlig	-	-	-	-	-	-	-	-	60.0	1.25	60.0	60.0	0,31	0,31	0,27	0,26	0,25
1503	75	CAUA	6,55	SVV	30,0	23,0	30,0	7,0	31,0	18,6	15	78,0	74,9	59,7	0,80	5,07	0,112	1,40	Dårlig	-	-	-	-	-	-	-	-	32,0	6,00	22,0	32,0	0,43	0,43	0,35	0,33	0,32
1503	75	CAUA	8,25	MC	37,0	18,0	25,0	7,0	36,5	20,0	220	96,0	92,6	73,4	0,79	4,89	0,097	1,35	Dårlig	-	-	-	-	-	-	-	-	31,0	1,00	31,0	31,0	0,33	0,33	0,28	0,27	0,26
1503	75	CAUA	12,41	NTNU	34,0	17,5	22,0	4,5	30,0	19,5	104	139,0	134,0	107,0	0,80	6,50	0,135	1,50	Dårlig	-	-	-	-	-	-	-	-	51,0	2,00	47,0	51,0	0,38	0,38	0,30	0,28	0,26
1503	75	CAUA	14,55	SVV	33,0	20,0	27,0	7,0	37,5	19,5	68	162,0	155,5	124,6	0,80	4,21	0,088	1,24	Dårlig	-	-	-	-	-	-	-	-	53,0	1,00	53,0	53,0	0,34	0,34	0,30	0,29	0,28
1503	75	CAUA	16,55	MC	33,0	18,0	23,5	5,5	33,5	19,5	138	183,0	174,0	139,0	0,80	7,32	0,154	1,00	Veldig dårlig	-	-	-	-	-	-	-	-	48,0	1,00	48,0	48,0	0,28	0,28	0,28	0,28	0,28
1503	75	CAUA	18,63	NTNU	31,0	18,5	22,0	3,5	29,0	20,0	104	205,0	196,0	157,0	0,80	6,20	0,135	1,24	Dårlig	-	-	-	-	-	-	-	-	64,0	1,20	64,0	63,0	0,33	0,32	0,29	0,28	0,27
1504	75	CAUA	6,55	SVV	33,0	20,0	26,0	6,0	40,0	19,0	110	76,4	116.0	01,0	0,80	3,51	0,074	-	Dariig Voldia dărlia	-	-	-	-	-	-	-	-	34,0	2,00	31,0	34,0	0.32	0.32	- 0.32	-	- 0.32
1504	75	CAUA	12 62		30,0	10,0	23,0	7,0	36,0	20.0	59	1/1 /	136.0	109.0	0,79	7,10	0,145	1,00	Veldig dårlig	-	-				-	-	-	51.0	3 30	45.0	51.0	0,32	0.38	0.31	0,32	0.28
1504	75	CAUA	15 45	SVV	35.0	19.0	20,0	5.0	38.0	19.5	54	174 7	166.9	133.5	0.80	3.50	0.071	1,00	Dårlig		-		-		-	-		62.0	1.50	61.0	62.0	0.37	0.37	0.37	0.37	0.37
1504	75	CAUA	16,65	MC	29,0	18,0	26,0	8,0	40,0	19,5	69	187,3	174,7	140,3	0,80	5,70	0,128	-	Dårlig	-	-	-	-	-	-	-	-	58,0	1,50	57,0	58,0	0,33	0,33	-	-	-
1504	75	CAUA	18,51	NTNU	27,0	18,5	21,5	3,0	31,0	20,0	44	208,5	195,0	156,0	0,80	5,20	0,122	-	Dårlig	-	-	-	-	-	-	-	-	80,0	2,70	64,0	77,0	0,41	0,39	-	-	-
1505	75	CAUA	13,45	MC	27,0	20,0	26,0	6,0	26,0	19,5	40	150,9	150,9	122,0	0,81	4,30	0,101	-	Dårlig	-	-	-	-	-	-	-	-	54,0	1,50	53,0	53,0	0,36	0,35	-	-	-
1505	75	CAUA	18,64	NTNU	27,0	21,0	25,0	4,0	24,0	19,0	74	204,9	196,0	157,0	0,80	3,90	0,092	-	Dårlig	-	-	-	-	-	-	-	-	78,0	2,10	70,0	78,0	0,40	0,40	-	-	-
2010	72	CAUA	9,40	NGI	33,0	18,0	24,0	6,0	-	19,5	58	119,0	119,0	71,0	0,60	2,05	0,043	-	God	25,1	35,1	0,051	39,1	867	28,5	13,0	458	45,5	1,30	45,0	45,0	0,38	0,38	-	-	-
2011	72	CAUA	10,40	NGI	29,0	17,0	25,0	8,0	-	19,5	36	126,9	126,9	76,0	0,60	4,05	0,091	-	Dărlig	25,6	62,8	2,381	3,1	31	63,3	1,0	16	42,0	0,50	50,0	50,0	0,33	0,39		-	
2012	72	CAUR	9.40	NGI	29,0	16,0	25.0	9.0	-	19,5	74	213,0	213,0	66.9	0,60	0.73	0,031	- 2 30	Veldig god	42,5		0,132	32,1	303	55,9	10,9	202	17.5	1,50	17.0	00,0	0,40	0,40	- 0.10	- 0.08	- 0.07
2015	72	CAUA	9.55	NGI	31,0	16.0	25,0	9.0	-	19,0	74	100,0	112.8	67.7	0.60	0.56	0.012	2,30	Veldig god	22.3	37.3	0.167	17.9	337	33.5	6.0	178	53.0	1.30	53.0	51.0	0,10	0.45	0.29	0.25	0.22
2015	72	CAUA	16,40	NGI	32,0	18,0	31,0	13,0	-	20,0	19	187,0	190,7	114,5	0,60	1,43	0,031	1,90	Veldig god	38,0	59,9	0,131	33,3	407	51,6	11,1	215	82,0	1,00	82,0	82,0	0,43	0,43	0,29	0,27	0,24
2015	72	CAUP	16,55	NGI	32,0	18,0	31,0	13,0	-	20,0	19	189,0	192,0	115,3	0,60	0,76	0,016	1,90	Veldig god	-	-	-	-	-	-	-	-	25,0	1,30	25,0		0,13		0,09	0,08	0,07
2018	72	CAUA	8,25	NGI	33,0	17,4	24,2	6,8	-	18,6	90	83,6	83,6	50,2	0,60	0,76	0,016	3,20	Veldig god	16,7	33,2	0,384	8,6	173	31,2	2,9	92	49,0	2,00	45,0	49,0	0,59	0,59	0,29	0,24	0,21
2018	72	CAUP	8,40	NGI	33,0	17,4	24,2	6,8	-	18,6	90	84,8	83,6	50,2	0,59	1,33	0,028	3,20	Veldig god	-	-	-	-	-	-	-	-	16,0	10,00	12,0		0,19		0,10	0,08	0,07
2018	72	CAUA	11,40	NGI	33,0	17,8	26,7	8,9	-	18,8	58	113,3	113,2	68,0	0,60	1,78	0,037	2,70	God	22,6	44,7	0,321	13,8	204	42,6	4,6	108	68,0	1,20	65,0	66,0	0,60	0,58	0,33	0,29	0,25
2018	72	CAUP	11,40	NGI	33,0	17,8	26,7	8,9	-	18,8	58	113,3	113,2	68,0	0,60	0,68	0,014	2,70	Veldig god	-	-	-	-	-	-	-	-	20,0	1,20	19,0	22.0	0,18	0.30	0,10	0,08	0,07
2030	72	CAUP	7 37	NGI	22,0	19,0	27,0	8,0	15,3	21,3	2	84,3 85.7	84,2 84.2	50,5	0,60	1,40	0,039	1,60	God	16,9	44,4	2,015	2,1	- 29	45,4	0,7	15	84,0 61.0	9.00	<u>33,0</u> 15.0	33,0	0.72	0,39	0.55	0.51	0,03
2000	72	CAUA	8.40	NGI	22,5	19,3	31.2	11.9	-	20.1	1	101.4	101.4	60.8	0.60	0.97	0.025	1,50	Veldia aod	20.2	64.3	2.683	3.3	30	68.6	1.1	16	109.0	16.00	48.0	40.0	1,07	0,39	0,84	0,79	0,75
2036	72	CAUP	8,52	NGI	22,5	19,3	31,2	11,9	-	20,1	1	102,4	102,4	61,0	0,60	1,83	0,048	1,50	God		-	-	-	-	-	-	-	43,0	13,00	12,0		0,42		0,33	0,31	0,29
2036	72	CAUA	10,40	NGI	28,0	17,8	27,0	9,2	-	19,2	23	118,4	118,4	71,0	0,60	0,87	0,020	1,40	Veldig god	23,6	36,3	0,211	12,1	254	30,0	4,0	134	48,0	1,60	46,0	47,0	0,41	0,40	0,33	0,31	0,30
2036	72	CAUP	14,40	NGI	29,5	17,4	23,1	5,7	-	20,1	50	152,4	145,1	91,3	0,60	2,05	0,046	1,33	God	-	-	-	-	-	-	-	-	33,0	4,00	15,0		0,23		0,19	0,18	0,18
2036	72	CAUA	14,40	NGI	29,5	17,4	23,1	5,7	-	20,1	140	152,4	145,1	91,3	0,63	1,24	0,028	1,33	Veldig god	26,8	42,9	0,236	13,7	230	37,5	4,6	122	59,0	10,00	55,0	57,0	0,41	0,39	0,34	0,33	0,31
2040	72	CAUP	16,23	NGI	38,0	20,0	42,9	22,9	-	18,5	5	166,6	166,6	100,1	0,60	1,89	0,037	2,20	Veldig god	-		-	-	-	-	-	-	40,0	7,00	31,0		0,24		0,15	0,13	0,12
2040	72	CAUA	16,40	NGI	38,0	20,0	42,9	22,9	-	18,5	5	168,0	167,8	100,8	0,60	2,22	0,043	2,20	God	33,3	53,9	0,152	27,1	365	46,9	9,0	193	74,0	4,00	66,0	73,0	0,44	0,44	0,27	0,24	0,22
2040	72	CAUR	17,40	NGI	35,0	20,2	42,9	22,7	-	18,9	4	178,0	177,8	106,6	0,60	0,86	0,018	2,20	Veldig god	35,6	68,2	0,261	25,1	250	63,1	8,4	132	100,0	1,80	96,0	99,0	0,50	0,56	0,35	0.31	0,28
2040	12	CAUF	17,50	NGI	33,0	20,2	42,9	22,1	-	10,9	4	179,4	179,4	107,0	0,00	0,90	0,010	2,20	veluig gou	-	-	-	-	-	-	-	-	41,0	2,00	30,0		0,20		0,14	0,15	0,11
* OCR og	bedømmel	se av prøvek	valiteten ba	seres på bei	eanet teoret	tisk OCR (O	CR = POP/g	o'0 +1)																												
					- J			,																												
1																	Prøvekvalitet	i hht NGF	melding 11:																	
wi	In-situ v	anninnhold			τ0	Initiell skjæ	erspenning			s _{u,A}	Tolket aktiv	v s _u styrke																								
wı	Flytegre	ense			τ ₅₀	Skjærspen	nning ved 50)% mobilise	ring	α _x	Shansep-p	arameter alf	fa				0.0-	V	′olumtøyning ∆	e/e0																
W _p	Utrulling	gsgrense	= 14/ 14/		ε _{a,50}	Aksiell tøy	ning ved 50'	% mobiliser	ing	∆e/e₀ Ae/c	Endring i p	oretallet - A	e = εvol (1+ι	ei) og ei = 2	.75 * wi		OCR \	eldig god t	il God til	Dial	Voldin d ^e															
ıp 	Total	etsinueks, Ip myokt	– w ₁ - w _p		E ₅₀	Sekantmo	dul				Antott over		e / ei = DW /	vvi			10		Drukbar	Darlig	veidig darlig															
Υ _{tot} S _t	Sensitiv	ritet			G ₅₀ S., n	Direkte s	uui basert nå ar	nisotropikoe	effisient	UCK	Anatt over	KUIISUIIGEIIN	เมราบทายเน				2-4	<0.03	0,04-0,07	0,07-0,14	>0.10															
p'ov	In-situ v	ertikal effekti	vspennina		T _{neak}	Maksismal	l opptredend	de skjærspe	enning								4-6	<0,02	0,02-0.035	0,035-0.07	>0,07															
σ' _{ac}	Vertikal	konsolidering	gsspenning		ε _{a,peak}	Aksiell tøy	ning ved ma	aksimal skja	erspenning																											
σ' _{rc}	Horison	tal konsolider	ringsspennii	ng	τ _{1,%}	Skjærsper	nning ved 1%	% aksiell tøy	/ning																											

- Sensitivitet In-situ vertikal effektivspenning

- $\begin{array}{ll} \epsilon_{n,peak} & \text{Maksismal opptredende skjærspenning} \\ \epsilon_{a,peak} & \text{Aksiell tøyning ved maksimal skjærspenning} \\ \tau_{1,\%} & \text{Skjærspenning ved 1% aksiell tøyning} \end{array}$

OPPDRAGSGIVER: Dr. Ing. A Aas Jakobsen Trondheim AS PROSJEKT: E6 Jaktøyen - Storler PROSJEKT NR: 20130642

2018-3-A-1.Plot1.grf

2018-5-A-2.Plot1.grf

H:\LABDATA\2013\20130642\Auttriax\Data\2040-8-A-2_Plot1.grf

5531-RIG-TEG-085-PR.1403, d=4,30m.xlsx / Plott spenningssti NTNU

5531-RIG-TEG-085-PR.1403, d=10,40m.xlsx / Plott spenningssti NTNU

5531-RIG-TEG-085-PR.1403, d=10,50m.xlsx / Plott spenningssti NTNU

5531-RIG-TEG-086-PR.1406, d=6,4m.xlsx / Plott spenningssti NTNU

5531-RIG-TEG-086-PR.1406, d=10,4m.xlsx / Plott spenningssti NTNU

5531-RIG-TEG-086-PR.1406, d=10,5m.xlsx / Plott spenningssti NTNU

5531-RIG-TEG-087-PR.1417, d=6,20m.xlsx / Plott spenningssti NTNU

5531-RIG-TEG-088-PR.1431, d=7,40m.xlsx / Plott spenningssti NTNU

5531-RIG-TEG-088-PR.1431, d=12,40m.xlsx / Plott spenningssti NTNU

415531-RIG-TEG-089-h1502, d9,98m.xlsx / Plott spenningssti NTNU

415531-RIG-TEG-089-h1502, d14,91m.xlsx / Plott spenningssti NTNU

415531-RIG-TEG-090-h.1503,d8,25m.xlsx / Plott spenningssti NTNU

415531-RIG-TEG-090-h.1503,d16,55m.xlsx / Plott spenningssti NTNU

415531-RIG-TEG-091-h1504,d10,10m.xlsx / Plott spenningssti NTNU

415531-RIG-TEG-091-h1504,d16.65m.xlsx / Plott spenningssti NTNU

415531-RIG-TEG-092-h1505, 13.45m.xlsx / Plott spenningssti NTNU

2010-7-A-1.Plot2.grf

2011-8-A-1.Plot2.grf

2012-12-A-1.Plot2.grf

2015-4-A-1.Plot2.grf

2018-3-A-1.Plot2.grf

2018-5-A-2.Plot2.grf

2030-3-A-1.Plot2.grf

2036-4-A-1.Plot2.grf

2036-5-A-2.Plot2.grf

2040-7-A-2.Plot2.grf

Test:

H:\LABDATA\2013\20130642\Auttriax\Data\2040-8-A-2_Plot2.grf

Dokumentnr.: 20130642-09-R Dato: 2014-11-07 Rev.nr.: 1/2015-03-13 Vedlegg D, Side 1

Vedlegg D - CPTU-tolkning

Figurer	
DI	CPTU 2 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D2	CPTU 1403 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D3	CPTU 1406 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D4	CPTU 1408 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D5	CPTU 1417 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D6	CPTU 1502 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D7	CPTU 1503 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D8	CPTU 1504 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D9	CPTU 1505 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D10	CPTU 2001 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D11	CPTU 2008 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D12	CPTU 2010 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D13	CPTU 2011 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D14	CPTU 2012 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D15	CPTU 2013 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D16	CPTU 2014 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D17	CPTU 2015 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D18	CPTU 2016 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D19	CPTU 2018 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D20	CPTU 2019 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D21	CPTU 2040 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D22	CPTU 2051 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D23	CPTU 2052 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D24	CPTU 2055 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D25	CPTU 2056 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D26	CPTU 2057 - Aktiv skjærstyrke basert på CPTU og SHANSEP
D27-D30	Sammenstilling av aktive skjærfasthetsprofiler for del A, B, C og D

Kontroll- og referanseside/ *Review and reference page*

Dokumentinformasjon/Document information					
Document title og jordegenskaper		Dokumentnr./Document No. 20130642-09-R			
umenttype/Type of document Distribusjon/Distribution		Dato/Date 7. november 2014			
ort/Report Begrenset/Limited		Rev.nr.&dato/<i>Rev.No.&date</i> 1/2015-03-13			
	I				
tsparametere					
Stedfesting/Geographical information					
Land, fylke/Country, County Norge, Sør-Trøndelag			Havområde/Offshore area		
Kommune/Municipality Trondheim kommune			Itnavn/ <i>Field name</i>		
Sted/Location Klett			Sted/Location		
Kartblad/ <i>Map</i> 1621 IV			Felt, blokknr./ <i>Field, Block No</i> .		
UTM-koordinater/UTM-coordinates N7022155 E565733					
Dokumentkontroll/Document control					
Kvalitetssikring i henhold til/Quality assurance according to NS-EN ISO9001					
Egen- kontroll/ Self review av/by:	Sidemanns- kontroll/ Colleague review av/by:	Uavhengig kontroll/ Independent review av/by:	Tverrfaglig kontroll/ Inter- disciplinary review av/by:		
BKB/ VGS	КК				
av k i 2015-02-27 Vegard Gavel-Solberg	2015-03-06 Tommy Hauger Søjdis	1			
	n vution tsparametere o NS-EN ISO900 Egen- kontroll/ Self review av/by: BKB/ VGS av k i 2015-02-27 Vegard Gavel-Solberg	Dokum 201306 Dato/Dato/Dato/Dato/Dato/Dato/Dato/Dato/	Dokumentnr./Docur 20130642-09-R ution Dato/Date 7. november 2014 Rev.nr.&dato/Rev.N 1/2015-03-13 tsparametere Havområde/Offshor Feltnavn/Field name Sted/Location Felt, blokknr./Field, Sted/Location Felt, blokknr./Field, Sidemanns- kontroll/ Self review av/by: Uavhengig kontroll/ Colleague review av/by: BKB/ VGS KK av k i 2015-02-27 Vegard Gavel-Solberg 2015-03-06 Tommy Haugen Sojdis		

Dokument godkjent for utsendelse/ Document approved for release	Dato/Date	Sign. Prosjektleder/Project Manager
	13. mars 2015	Alf Kristian Lund

NGI (Norges Geotekniske Institutt) er et internasjonalt ledende senter for forskning og rådgivning innen geofagene. Vi utvikler optimale løsninger for samfunnet, og tilbyr ekspertise om jord, berg og snø og deres påvirkning på miljøet, konstruksjoner og anlegg.

Vi arbeider i følgende markeder: olje, gass og energi, bygg, anlegg og samferdsel, naturskade og miljøteknologi. NGI er en privat stiftelse med kontor og laboratorier i Oslo, avdelingskontor i Trondheim og datterselskap i Houston, Texas, USA.

NGI ble utnevnt til "Senter for fremragende forskning" (SFF) i 2002.

www.ngi.no

NGI (Norwegian Geotechnical Institute) is a leading international centre for research and consulting in the geosciences. NGI develops optimum solutions for society, and offers expertise on the behaviour of soil, rock and snow and their interaction with the natural and built environment.

NGI works within the oil, gas and energy, building and construction, transportation, natural hazards and environment sectors. NGI is a private foundation with office and laboratory in Oslo, branch office in Trondheim and daughter company in Houston, Texas, USA.

NGI was awarded Centre of Excellence status in 2002.

www.ngi.no

Hovedkontor/Main office: PO Box 3930 Ullevål Stadion NO-0806 Oslo Norway

Besøksadresse/Street address Sognsveien 72, NO-0855 Oslo

Avd Trondheim/Trondheim office: PO Box 5687 Sluppen NO-7485 Trondheim Norway

Besøksadresse/Street address: Høgskoleringen 9, 7034 Trondheim

T: (+47) 22 02 30 00 F: (+47) 22 23 04 48

ngi@ngi.no www.ngi.no

Kontonr 5096 05 01281/IBAN NO26 5096 0501 281 Org.nr/Company No.: 958 254 318 MVA

BSI EN ISO 9001 Sertifisert av/Certified by BSI, Rea.No. FS 3298