

RAPPORT

Kvikkleirekartlegging NVE

Leveransebeskrivelse geoskanning 2021

DOK. NR. 21019-01-R REV.NR. 0/ Ved elektronisk overføring kan ikke konfidensialiteten eller autentisiteten av dette dokumentet garanteres. Adressaten bør vurdere denne risikoen og ta fullt ansvar for bruk av dette dokumentet.

Dokumentet skal ikke benyttes i utdrag eller til andre formål enn det dokumentet omhandler. Dokumentet må ikke reproduseres eller leveres til tredjemann uten eiers samtykke. Dokumentet må ikke endres uten samtykke fra EMerald Geomodelling.

Neither the confidentiality nor the integrity of this document can be guaranteed following electronic transmission. The addressee should consider this risk and take full responsibility for use of this document.

This document shall not be used in parts, or for other purposes than the document was prepared for. The document shall not be copied, in parts or in whole, or be given to a third party without the owner's consent. No changes to the document shall be made without consent from EMerald Geomodelling.

Prosjekt

Prosjekttittel:	Kvikkleirekartlegging NVE
Dokumenttittel:	Leveransebeskrivelse geoskanning 2021
Dokumentnr.:	21019 01-R
Dato:	2022-04-04
Rev.nr. / Rev.dato:	0 /

Oppdragsgiver

Oppdragsgiver:	NVE
Kontaktperson:	Cristian Andres Godoy Leiva
Kontraktreferanse:	Tilbud 21019-02-T_Kvikkleirekartlegging datert 27.08.2021

for EMerald Geomodelling

Prosjektleder:	Guro Huun Skurdal
Utarbeidet av:	Guro Huun Skurdal og Craig William Christensen

Dokumentkontroll/Document control					
Rev/ Rev.	Revisjonsgrunnlag/Reason for revision	Egenkontroll av/ Self review by:	Sidemannskontroll av/ Colleague review by:		
0 Originaldokument		2022-04-01 Guro Huun Skurdal 2022-04-01 Craig William Christensen	2022-04-04 Andreas A Pfaffhuber		
Dokume	nt godkjent for utsendelse/	Dato/Date	Prosjektleder/Project Manager		
Document approved for release		4. april 2022	Guro Huun Skurdal		

Sammendrag

EMerald Geomodelling har på oppdrag fra NVE utført helikopterbasert geoskanning (AEM) på Nannestad i området vest for Gardermoen rundt tettstedet Teigebyen. Hovedformålet med undersøkelsen var å kartlegge sannsynlighet for kvikkleire. Det ble også utført tolkning av dybde til berg. Foreliggende datarapport presenterer data og resultater fra geoskanningen utført i september 2021.

Flere geotekniske boringer, tolkninger og innmåling av berg i dagen fra undersøkelsesområdet var tilgjengelig og har blitt brukt som grunnlagsdata i tolkningene. Basert på NGUs løsmassekart var det forventet tykke løsmassedekker i stort sett hele undersøkelsesområdet.

Det var mulig å produsere geofysiske resistivitetsmodeller og utføre tolkning over store deler av de skannede områdene. Det er flere større kraftledninger og veier i undersøkelsesområdet samt gårder og mindre bebygde områder. Eksisterende infrastruktur fører ofte til forstyrrelser i dataene. Noen av de innsamlede dataene i nær tilknytning til eksisterende infrastruktur er påvirket og måtte derfor fjernes. Det kunne derfor ikke produseres resistivitetsmodeller i disse områdene.

Undersøkelsesområdet er preget av stor variasjon i resistivitetsverdier fra svært resistivt til veldig konduktivt. Det var forventet at berggrunnen i området ville være svært resistiv og at løsmassene ville være mer konduktive, som vil gi en god kontrast mellom løsmasser og berggrunn. I store deler av undersøkelsesområdet er kontrasten forholdsvis tydelig, mens i områder med veldig tynne løsmasser eller der hvor løsmassene er mer resistive (f.eks., morene eller breavsetninger) er det knyttet større usikkerhet til tolkningen av bergoverflaten. Også der hvor det forekommer store løsmassemektigheter (sentralt i undersøkelsesområdet), var det utfordrende å detektere overgangen til berg grunnet liten resistivitetskontrast på grunn av manglende penetrasjonsdyp. I det som tolkes som løsmasser ser man også større variasjon i resistivitetsverdier som tyder på ulike løsmassetyper, fra leire, utvasket leire til grovere masser som sand.

Det har blitt utført tolkning av løsmassetykkelse og bergtopografi basert på de elektromagnetiske dataene samlet inn under geoskanningen samt eksisterende geotekniske boringer. Tolkningene leveres med kvantifisert usikkerhet.

Tolkningene viser stor variasjon i bergdybde i undersøkelsesområdene, fra berg i dagen i noen bekkedaler og i kanten av undersøkelsesområdet til over 140 m sør for Teigebyen.

Resistivitetsmodellen alene påviser noen dypere volumer av saltholdig, stabil marin leire. Resistivitetsmodellen er også noe tvetydig: over nesten hele dekningsområdet er det et tykt lag med middels resistivitet (30-90 Ω m) som potensielt (men ikke nødvendigvis) er sprøbruddmateriale. Resistivitetsmodellen ble integrert med eksisterende geotekniske data ved bruk av en maskinlæringsalgoritme for å løse denne tvetydigheten. Outputen er et 3D-rutenett med sannsynlighet for sprøbruddmateriale (d.v.s., potensielt kvikt materiale). Resultatet viser at det er store variasjoner i sannsynligheten for sprøbruddmateriale i områder, men at det er noen lokasjoner med større usikkerhet i tolkningene.

Resultatene kan brukes videre for å planlegge nye geotekniske undersøkelser. Ofte er steder med større usikkerhet i tolkningene der nye boringer er mest verdifulle å utføre.

Prosjektet konkluderes med denne rapporten og leveransen. Når det foreligger nye boringer, kan EMerald engasjeres igjen for å oppdatere og forbedre de leverte modellene. Videre trening i 3D visualisering og tolkning av ytterlige områder med resistivitetsdata kan også diskuteres.

Dokumentnr.: 21019-01-R Dato: 2022-04-04 Rev.nr.: 0 Side: 6

Innhold

1	Innle	dning	7
2	Prosj	ektbeskrivelse	7
	2.1	Prosjektomfang	7
	2.2	Gjennomføring helikopterbasert geoskanning	8
3	Bakg	runnsinformasjon	9
	3.1	Geologien i undersøkelsesområdet	9
	3.2	Tilgjengelige grunnundersøkelser	10
	3.3	Andre datakilder	11
4	Besk	rivelse og tolkning av geoskanningsdataene	12
	4.1	Dekning	12
	4.2	Beskrivelse av resistivitetsdata	13
	4.3	Løsmassetykkelse og bergmodell	15
	4.3.1	Usikkerhetsanalyse	19
	4.4	Sannsynlighet for sprøbruddmateriale	19
	4.4.1	Sannsynlighet for sprøbruddmateriale i 3D volumer	21
	4.4.2	Sannsynlig kvikkleiretykkelse	23
	4.4.3	Sammenligninger med tidligere kartlagte faresoner	27
5	Leve	ranse	29
6	Vide	re arbeid	29

Vedlegg

Vedlegg A	Leveransefiler
Vedlegg B	Geoskanning - metodebeskrivelse

Dokumentnr.: 21019-01-R Dato: 2022-04-04 Rev.nr.: 0 Side: 7

1 Innledning

NVE utfører kartlegging for å vurdere kvikkleiresoner i de tre kommunene Gjerdrum, Nannestad og Ullensaker. EMerald Geomodelling er engasjert for å utføre geoskanning fra luften (AEM) over et område i Nannestad kommune med formål om å effektivt få et overordnet bilde av grunnforholdene i området.

Foreliggende rapport presenterer måleprogrammet og beskriver resultater og leveranser knyttet til den utførte geoskanningen. Undersøkelsene ble fløyet i september 2021 og ca 400 linje-km data blei samlet inn i et 36 km² stort område.

2 Prosjektbeskrivelse

2.1 Prosjektomfang

Datainnsamlingen ble utført over et 36km² stort området på Nannestad i området vest for Gardermoen. Dataene ble samlet inn i løpet av 3 dager fra 16. til 18. september 2021. Grunnet nærheten til Gardermoen lufthavn var det restriksjoner i forhold til tidspunkt og varighet på flygningene og datainnsamlingen tok dermed noe lengre tid enn vanlig. Det ble totalt fløyet 414 linje-km.

De fremkomne resistivitetsmodellene er basert på manuelt prosesserte data som er blitt renset for støy og andre forstyrrelser. Dataene ble så invertert for å finne en resistivitetsmodell som reflekterer de målte dataene og dermed geologien i området. Denne resistivitetsmodellen sammen med tilgjengelige geotekniske data, allerede utførte tolkninger og geologiske kart har blitt brukt i tolkningen.

Formålet med undersøkelsene var å fremskaffe informasjon om de geologiske forholdene og hovedsakelig tolke sannsynlighet for forekomst av kvikkleire/sprøbruddmateriale. Dybde til berg har også blitt tolket til bruk i analysen av sannsynlighet for sprøbruddmateriale.

Leveransen omfatter flere datafiler. Filene er levert i koordinatsystemet UTM33N. Alle leveransene er oppsummert i denne rapporten. I Vedlegg A er filene som har blitt levert forklart.

Dokumentnr.: 21019-01-R Dato: 2022-04-04 Rev.nr.: 0 Side: 8

2.2 Gjennomføring helikopterbasert geoskanning

Geoskanningen er utført langs planlagte flylinjer og er fløyet med ca 90 meters linjeavstand i området NVE ønsket å dekke.

Ettersom det ikke er tillatt å fly med hengende last over mennesker, måtte piloten avvike noe fra de planlagte flyplanen i områder med gårder og mer bebyggelse. Eksisterende vei, dyr på beite og kraftlinjer gjorde det noe utfordrende å fly linjene som planlagt i enkelte områder og det ble gjort justeringer av planlagte flylinjer for å dekke områdene så godt det lot seg gjøre. Utførte flylinjer for undersøkelsen er vist i Figur 1.

I forkant av undersøkelsene fikk EMerald tilsendt kontaktinformasjon til bønder med dyr i området som skulle dekkes fra NGU. Bøndene ble kontaktet og informert om undersøkelsene og de som hadde behov for nærmere informasjon om tidspunkt for flygning ble fulqt opp underveis i undersøkelsene.

Figur 1: Planlagte flylinjer (blå) og utførte flylinjer (grønn) i undersøkelsesområdet på Nannestad.

Landingsplass for helikopteret ble etablert på et jorde på eiendom med gårds- og bruksnr. 21/9 på Nannestad. Geoskanningen ble utført med SkyTEMs 304 system. Prinsipper og metodikk for helikopterbasert geoskanning er nærmere beskrevet i Vedlegg B.

Dokumentnr.: 21019-01-R Dato: 2022-04-04 Rev.nr.: 0 Side: 9

3 Bakgrunnsinformasjon

3.1 Geologien i undersøkelsesområdet

Basert på NGUs berggrunnskart er det forventet gneis og granitt i undersøkelsesområdet. Magmatiske bergarter er karakterisert av høy resistivitet. Berggrunnen er dekket av hav- og fjordavsetninger med innslag av fluviale avsetninger og enkelte områder med noe morene ifølge NGUs løsmassekart (Figur 2). Leire er karakterisert av lave resistivitetsverdier, mens et høyere innslag av silt og sand vil føre til økende resistivitet. Også marine leirer med et lavere saltinnhold (spørbruddmateriale/kvikkleire) vil karakteriseres av noe økende resistivitet i forhold til marine leirer.

Figur 2: Løsmassekart fra NGU i området sammen med utført flylinjer

3.2 Tilgjengelige grunnundersøkelser

EMerald's unike tolkningsmetoder kombinerer geofysiske modeller fra geoskanning med eksisterende konvensjonelle grunnundersøkelser. Ved hjelp av maskinlæring brukes boringer som treningsdata for å bygge en helhetlig 3D-model. For at boringer skal kunne brukes som treningsdata for beregning av løsmassetykkelse og sannsynlighet for sprøbruddmateriale, må de være innenfor 75 meter fra et AEMmålepunkt. 268 eksisterende boringer og observasjoner av berg som tilfredsstilte dette kravet var tilgengelig i undersøkelsesområdet (Figur 3). De aller fleste boringene er hentet fra NADAGs database, mens to datasett som ikke var tilgjengelig i NADAG ble mottatt fra NVE. En del eldre boringer som bare eksisterte som PDFer ble digitalisert og tolket av NVE og benyttet i de endelige tolkningene. De tilgjengelige boringene bestod av totalsonderinger, CPT, dreietrykksonderinger og noen labprøver. NVE delte også registrerte observasjoner av berg i dagen gjort i felt. Tabell 1 gir en oversikt over de ulike datasettene benyttet i tolkningsarbeidet.

Navn datasett	Antall overlappende boringer	Kilde
039.19x - NVE - Unntatt offentlighet	10	NVE
040.17a - NVE - Unntatt offentlighet	3	NVE
Bjorkåsen Nannestad (93566)	8	NADAG
ENGELSRUDHAGEN OST-NANNESTAD	20	NADAG
(103788)		
Engelsrudhagan	7	NADAG
Fv120 Engelstadkorset-Nygårdstoppen	16	NADAG
(93556)		
Golfanlegg*	12	NADAG
Hanvrehagen og Engelsrud S1 og S2	10	NADAG
Leirbekken_Nannestad (103780)	27	NADAG
Nannestadveien 216	3	NADAG
Nordby Maskin (103873)*	8	NADAG
Områdestabilitet Nannestad (103793)	3	NADAG
RV35 - GARDERMOEN (103789)	83	NADAG
RV35 Moreppenveien-Kneppe (103777)	12	NADAG
NVE_interpreted_boreholes	23	NVE
20211126_Outcrops_NVE	23	NVE
*datasettene inneholder noen like boringer		

Tabell 1: Tilgjengelige tidligere utførte grunnundersøkelser og observasjoner som overlapper med det skannede området.

Figur 3: Tilgjengelige grunnundersøkelser og observasjoner fra undersøkelsesområdet. Geotekniske boringer hentet fra NADAG og mottatt fra NVE i gult, tolkede boringer utført av NVE i rosa, og registrerte bergblotninger fra NVE i blått. Røde punkter angir dekning av resistivitetsdata.

3.3 Andre datakilder

Noen andre datasett ble også brukt i løpet av prosjektet:

- Kartverkets nasjonale høydemodell, hentet fra høydedata.no:
 - o Med 10 m oppløsning den 2021-09-08
 - o Med 1 m oppløsning den 2021-11-07

- NGUs løsmassekart i målestokk 1:50.000, lastet ned digitalt den 2022-03-18
- Kvikkleirefaresoner tidligere kartlagt av NVE, mottatt direkte fra NVE i juni 2021.

4 Beskrivelse og tolkning av geoskanningsdataene

4.1 Dekning

Det var stort sett godt datasignal i store deler av undersøkelsesområdet. Grunnet en del infrastruktur som kraftlinjer, veier og bebyggelse i området var noe av dataene samlet inn over disse påvirket og måtte tas bort. I disse områdene var det derfor ikke mulig å produsere en resistivitetsmodell (Figur 4).

Figur 4: Utførte flylinjer (grønn) og skannede områder hvor det var mulig å generer resistivitetsmodeller (rød). Rosa linjer indikerer kraftlinjer i undersøkelsesområdet.

4.2 Beskrivelse av resistivitetsdata

Ulike geologiske materialer har ulike fysiske egenskaper, og ved helikopter geoskanning måles ledningsevnen til ulike materialer i grunnen. Noen materialer leder godt (høy konduktivitet) mens andre leder mindre godt (høy resistivitet). Dette kan brukes til å tolke geologien i et område (Vedlegg B).

Der man har god resistivitetskontrast mellom ulike geologiske materialer kan resistivitetsmodellen brukes til å identifisere geologiske overganger. I undersøkelsesområdet er det forventet resistiv berggrunn under mere konduktive løsmasser og dermed gode forutsetninger for å tolke løsmassetykkelsen og beregne bergoverflaten i området. Det er også forventet ulike løsmasser karakterisert av ulike resistivitetsverdier som også muliggjør tolkning av ulike løsmassevolumer.

Undersøkelsesområdet er preget av stor variasjon i resistivitetsverdier. De øverste lagene har hovedsakelig resistiviteter mellom $30 - 90 \Omega m$, men variasjoner mellom $0,2 \Omega m$ til flere tusen Ohmmeter forekommer i undersøkelsesområdet (Figur 5). Variasjonene nær overflaten kan komme av forskjeller i løsmassetype. Ved å sammenligne NGUs løsmassekart med resistiviteten i de øverste 6,5 m i resistivitetsmodellen ser man at den marine leiren som dominerer området har som forventet en betydelig lavere resistivitet enn de fleste andre løsmassetyper som forventes i området (Figur 6). Et unntak er elve- og bekkeavsetninger, som forekommer i tynne, smale forekomster blant marin leire. Slike avsetninger forventer man at skulle være representert av en høyere resistivitet. Det antas at på grunn av det geofysiske systemets begrensede oppløsning, skilles ikke disse sedimentene fra den omkringliggende marine leiren, ettersom signalet blir kombinert med den omkringliggende leiren i de resulterende modellene.

3D-resistivitetsmodellen viser volumer med ulike resistivitetsverdier (Figur 7). Flere større volumer med veldig lave resistiviteter under 5 Ω m finnes i området. Disse forekommer hovedsakelig på minst 5-15 m dybde. Det største området er lokalisert i midten av dekningsområdet rett sør for Teigebyen (Figur 7D). En unik lavresistivitetsanomali finnes også i den nordligste kanten av dekningsområdet, men denne er ikke relatert til sedimenter og forekommer der NGU tidligere har kartlagt økonomiske mineralforekomster eller svartskifer. De høyeste resistivitetsverdiene forekommer oftest der det ikke er kartlagt forekomster av marin leire eller i dypet der det forventes grunt resistivt berg (Figur 7C).

Figur 5: Statistisk fordeling av resistivitetsverdier i de ulike lagene i resistivitetsmodellen. Modellag med større usikkerhet er ikke inkludert i beregningen.

Figur 6: Sammenligning av NGUs løsmassekart og resistivitetsverdier i de øverste 6.5 m i resistivitetsmodellen. Antall datapunkter med kartlagt forekomst er også inkludert til høyre (merk at skalaen er logaritmisk).

Figur 7: 3D-visualisering av resistivitetsmodellen: A) hele modellen (Deler av modellen under investigasjonsdybden (den såkalt DOI) vises som gjennomskinnelig volumer).; B) middels resistiviteter (10-40 Ω m); C) høye resistiviteter (>500 Ω m); D) lave resistiviteter (< 5 Ω m). Den røde pilen i D) peker på en lavresistivitetsanomali som ikke er relatert til marin leire men en ledende bergart.

4.3 Løsmassetykkelse og bergmodell

Grunnet resistivitetskontrasten mellom det resistivie berget og de mer konduktive løsmassene er det mulig å tolke dybde til berg i området. I større deler av undersøkelsesområdet er det en god kontrast mellom berg og løsmasser i resistivitetsmodellen, men også områder med mindre kontrast hvor det var vanskeligere å utføre tolkning og det er dermed knyttet større usikkerhet til tolkningene utført her (Figur 8). Det var mer utfordrende å detektere denne overgangen i områder hvor det forekommer tykkere marine avsetninger hvor det ofte ikke er et tilstrekkelig penetrasjonsdyp (høyre i Figur 8). Det samme gjelder for områder med veldig tynne løsmasser hvor metodens oppløsning ikke er god nok til å fange de tynne løsmassene, eller ved ganske resistive løsmasser hvor kontrasten er liten.

Tilgangen til geotekniske boringer i slike områder som kan brukes som treningsdata minsker usikkerheten i tolkningene. Tilgjengelige boringer i området som bekreftet dybde til berg korrelerte godt med den observerte resistivitetskontrasten (Figur 9). I området med tykke marine avsetninger manglet det boringer som bekreftet bergdyp.

Figur 8: Eksempel på dybdesnitt i resistivitetsmodellen langs en flylinje. Mot venstre er det tynnere løsmasser og god kontrast mellom berg og løsmasser. Mot høyre er det svært tykke og konduktive løsmasser og ikke god nok dybdepenetrasjon til å se en god kontrast mellom berg og løsmasse. Tolkningen av bergdybde (sorte punkter) har derfor en høyere usikkerhet her (større sorte barer). Over den tolkede bergoverflaten er det variasjoner i resistivitet som representerer ulike løsmasser.

Figur 9: Bergpåvisende boringer (grønne vertikale sylindere) langs flylinje 104001 som illustrerer den gode korrelasjon mellom kontrast i resistivitetsmodellen og påvist bergdybde. (visualiserte boringer er innenfor 75 m fra flylinjen).

En maskinlæring-basert algoritme brukes for å utføre den tolkning (Vedlegg B). Som treningsdata er det benyttet tilgjengelige boringer og innmålt berg i dagen. Noen manuelle tolkningspunkter er også brukt der bergbekreftende treningsdata mangler, spesielt der berggrunnen er veldig dypt sør for Teigebyen. En triangulert bergoverflate

er deretter laget av den tolkede resistivitetsmodellen, de geotekniske boringene, og noen interpolerte rutenettpunkter.

Det er stor variasjon i tolket lømassetykkelse i undersøkelsesområdet (Figur 10). Man ser variasjoner fra berg i dagen til tykkere marine avsetninger på så mye som opp mot 140 meter enkelte steder. De tykkeste løsmassene finnes i de sentrale delene av undersøkelsesområdet sør for Teigebyen. Løsmassedekkene er tynnere i den vestlige og nordlige delen av undersøkelsesområdet hvor det stort sett finnes løsmassedekker fra noen få meter til opp mot 50 meter.

Figur 10: Tolket dybde til berg basert på resistivitetsmodellen hvor tilgjengelige boringer og feltobservasjoner er brukt som treningsdata.

Figur 11: 3D visninger av den tolkede bergmodellen: (øvre bilde) fargelagt etter dybde fra terrengoverflaten; (nedre bilde) som en gjennomskinnelig overflate sammen med et vertikalsnitt gjennom resistivitetsmodellen. Rosa sylindere viser boringer som har bekreftet berg, mens sorte sylindere viser utførte boringer som ikke bekreftet berg.

Ô

Dokumentnr.: 21019-01-R Dato: 2022-04-04 Rev.nr.: 0 Side: 19

4.3.1 Usikkerhetsanalyse

Usikkerhetsestimatet som er levert består av to komponenter (Figur 12). Det ene er prediksjonskomponent, som er usikkerheten i tolkningen av resistivitetsmodellen. I hele undersøkelsesområdet varierer den mellom +/- 5 – 15 m. I områder med tykkere sedimenter øker generelt også usikkerheten, grunnet fysikken i metoden. Den andre komponent er usikkerheten skapt av interpoleringen. Jo lenger fra et borehull eller jo lenger fra et AEM-målepunkt, jo høyere er usikkerheten. Derfor er den totale usikkerheten opp mot +/- 25 m i noen tilfeller.

Figur 12: Usikkerhet i tolket dybde til berg. Usikkerhetsverdiene er +/- m.

4.4 Sannsynlighet for sprøbruddmateriale

Kvikkleire er typisk karakterisert av resistivitetsverdier mellom noen få 10-talls og noen få 100-talls Ω m. Det er dog også andre sedimenter som kan ha tilsvarende resistiviteter som for eksempel marin leire med høyere silt-innhold, noe som kan gjøre tolkningen utfordrende. Det vil si at det uten andre støttedata er vanskelig å bestemme hva en resistivitet typisk for kvikkleire forårsakes av og lokale geotekniske data trengs for å løse tvetydigheten i resistivitetsmodellen. Med tilgang til geotekniske data som tolkede boringer og/eller sedimentprøver tolket i laboratorie, vil disse kunne brukes som valideringsdata og det kan kalibreres mot disse. Man vil da på generelt grunnlag kunne forvente mer nøyaktige resultater med mindre usikkerhet.

Det er derimot mulig i noen tilfeller å entydig identifisere ikke-kvikt materiale med bruk av helikopter-basert geoskanningsdata. Kvikkleire kan utelukkes der resistiviteten er svært høy eller svært lav. Marine avsetninger med høyt saltinnhold kan skilles fra kvikkleire basert på deres veldig lave elektriske resistivitet (ofte mindre enn 10 til 30 Ω m). Disse marine sedimenter som ikke er utvasket er typisk ikke kvikke eller ikke sprøbrudmaterialer. Materiale med veldig høy resistivitet (d.v.s., over 1000 Ω m) kan normalt utelukkes som kvikkleire, men disse forekommer som oftest i dypet og tilsvarer berg.

I undersøkelsesområdet viser den geofysiske modellen områder med veldig lave resistiviteter i dypet og det er rimelig å anta veldig lav sannsynlighet for sensitivt materiale i disse områdene (Figur 13).

Figur 13: Enkelte områder i dypet med veldig lav konduktivitet har svært lav sannsynlighet for sprøbruddmateriale og er tolket til å være marin leire. Områder med noen få 10-talls og noen få 100-talls Ω m kan tilsvare sprøbruddmateriale. Høy resistivitet i dypet tilsvarer berggrunn. Geotekniske data, som tolkede boringer og/eller sedimentprøver tolket i laboratorie, vil kunne brukes som valideringsdata og det kan kalibreres mot disse for å tolke sannsynlighet i hele resistivitetsmodellen.

EMerald har utviklet en totrinns prosess for å kartlegge sannsynlighet for forekomst av sprøbruddmateriale i undersøkelsesområdet. Metoden kombinerer elektrisk resistivitet, geotekniske boringer og labdata ved bruk av maskinlæring. Først utføres en tolkning av utolkede geotekniske sonderinger. Resultatet brukes deretter sammen med eksisterende tolkninger for å trene en maskinlæringsalgoritme den lokale sammenhengen mellom resistivitet og sprøbruddmateriale. Denne brukes til å predikere sannsynligheten for sprøbruddmateriale over hele resistivitetsmodellen fra geoskanningen. For metodebeskrivelse se vedlegg B, seksjon 5.

Det finnes totalt 245 geotekniske boringer som overlapper med det skannede området. Et fåtall av disse var boringer tolket manuelt av NVE eller labprøver der omrørt skjærestyrke har blitt målt. De resterende boringene ble tolket ved hjelp av EMeralds maskinlæringsalgoritmer. I treningsprosessen var NVEs manuelle tolkninger vektet 10 ganger mer en de automatisk genererte tolkningene.

Enheter i resistivitetsmodellen med lavere verdier enn 10 Ω m er sjeldent nådd av geotekniske boringer. Uten treningsdata fra disse områdene kan tolkninger av resistivitetsmodellen fra algoritmen være misvisende i slike områder. Derfor er noen manuelle datapunkter fra området med svære lave resistiviteter også brukt som treningspunkter i tillegg til de geotekniske borehullene. 312 tilfeldige punkter fra resistivitetsmodellen der verdien er under 6 Ω m ble brukt som treningspunkter for materiale som antas å ikke være sprøbruddmateriale. Disse 312 datapunktene utgjør kun 0.03% av hele treningsdatasettet.

4.4.1 Sannsynlighet for sprøbruddmateriale i 3D volumer

Den resulterende modellen kan visualiseres i 3D i forskjellige former, blant annet som vertikale snitt (Figur 14) eller som volumer (Figur 15, Figur 16). Resultatene viser at det potensielt forekommer sprøbruddmateriale i nesten hele prosjektområdet under et tynt tørrskorpelag på noen få meter. De eneste områdene hvor det er lav sannsynlighet er hvor det forekommer materiale med veldig lav resistivitet i de dypere områdene samt ut mot kantene av undersøkelsesområdet i de grunnere områdene mot vest.

Når sannsynlighetsverdien hverken er høy eller lav betyr det at resultatet er usikkert. Området vest for Teigebyen er et eksempel på et slikt område med økt usikkerhet. Det er ikke alltid en skarp overgang fra veldig høye sannsynligheter rundt et volum med mulig sprøbruddmateriale til veldig lave. I noen tilfeller kan disse gradvise endringene spenne over laterale avstander på 50 til 200 m. Slike lokasjoner er steder der nye geotekniske data har den største mulighet til å forbedre modellen.

Figur 14: Hvitt grid er tolket bergoverflate, tynne sylindere er sonderinger tolket ved hjelp av maskinlæring, og tykkere sylindere er labprøver eller sonderinger tolket av geoteknikere. De tre vertikale snittene viser beregnet sannsynlighet for sprøbruddmateriale som er tolket i hele resistivitetsvolumet og hvor tolkede geotekniske data er brukt som treningsdata.

Figur 15: Volumer med høy (oransje) til veldig høy (rød) sannsynlighet for sprøbruddmateriale visualisert sammen med tolkede geotekniske data (sylindere) og tolket bergoverflate (hvitt grid).

Figur 16: Volumer sett ovenfra med veldig høy (rød), høy (oransje), og middels (gjennomskinnelig grå) sannsynlighet for sprøbruddmateriale sammen med overlappende borepunkter (svarte punkter).

4.4.2 2D fremstilling av 3D modellen

Det er også produsert noen 2D produkter basert på den resulterende 3D modellen. Når 3D data vises i 2D vil noe informasjon gå tapt, men de kan likevel gi nyttig innsikt i tolkningsresultatene. Informasjonen som ligger i 3D-modellen er framstilt på tre ulike måter:

• Høy sannsynlighet for sprøbruddmateriale

Dette produkt tar for seg et estimat på hvor i området det er mest sannsynlig å påtreffe sprøbruddmateriale. Fremgangsmåten er inspirert av metodikken som ingeniører bruker når de planlegger borehull. Hensikten er primært å påvise om løsmassen

inneholder kvikkleire eller ikke. 2D analysen og tilsvarende kartvisning indikerer hvor det er mest sannsynlig å påtreffe sprøbruddmateriale. Fire forskjellige statistiske øvre verdier for sannsynlighet ble beregnet (Figur 17). På et enkelt punkt spør man om det er forventet kvikkleire eller ikke. For hvert enkelt punkt er det hentet ut den maksimale sannsynlighetsverdien. Det er også hentet ut den 90. persentil, en statistikk som er mindre sårbar mot urealistiske store verdier som kan komme av feil i algoritmen eller dataene. Analysen er kjørt både for alle løsmasselag og bare for de første 40 m.

• Total tykkelse av sprøbruddmateriale

Som ett mer kvantitativt produkt er det beregnet den forventete tykkelsen av sprøbruddmateriale (Figur 18, Figur 19). Denne beregningen gir ikke bare indikasjon på tilstedeværelsen av sprøbruddmateriale, men også mektigheten. For hver x-y posisjon er det tatt summen av lagtykkelse ganget med sannsynlighetsverdien for hvert lag. Tre versjoner av estimatet er beregnet:

- nedre estimat: kun modellag med minst 70% sannsynlighet
- middels estimat: minst 50% sannsynlighet
- øvre estimat: minst 30% sannsynlighet
- Tykkelse av sprøbruddmateriale opp til 40 m dybde

Tilsvarende som for total tykkelse, ble det beregnet en mulig tykkelse kun basert på de øverste 40 m i undergrunnen, ettersom veldig dype forekomster av sprøbruddmateriale ikke nødvendigvis utgjør en skredfare og derfor ikke er av like stor betydning.

Noen observasjoner følger av disse kartproduktene:

- Det er en klar sammenheng mellom bergdybde og tolket sannsynlighet for forekomst av sprøbruddmateriale. Et histogramplot (Figur 20) illustrerer at sprøbruddmaterial er veldig usannsynlig der bergdybden er mindre enn 10 m. Det må likevel understrekes at dette kan komme av mangelen på treningsdata i disse områdene med grunt berg. Dette gjelder spesielt de nordvestlige og nordlige marginene av dekningsområdet.
- Det finnes veldig tykke avsetninger med stor sannsynlighet for sprøbruddmateriale i de sørlige og sentrale delene av dekningsområdet (Figur 18), men deler av disse store avsetningene ligger dypere enn 40 m under overflaten (Figur 19).

\bigcirc

Dokumentnr.: 21019-01-R Dato: 2022-04-04 Rev.nr.: 0 Side: 25

Figur 17: Øvre verdier for sprøbruddsannsynligheter beregnet på forskjellige måter: enten den maksimale verdien (øvre rad) eller den 90. persentilen (nedre rad), brukt enten på alle modellag (venstre kolonne) eller kun på de øverste 40 m av undergrunnen (høyre kolonne).

Figur 18: Forventet tykkelse av sprøbruddmateriale. Tre beregninger vises: (fra venstre til høyre) et nedre, middels, og øvre estimat.

Figur 19: Forventet tykkelse av sprøbruddmateriale i de øverste 40 m av undergrunnen. Tre beregninger vises: (fra venstre til høyre) et nedre, middels, og øvre estimat.

Figur 20: 2D distribusjonsplot mellom dybde til berg og høyeste verdi av sannsynlighet for sprøbruddmateriale. Lysere piksler betyr høyere konsentrasjon av datapunkter. Enkelte datapunkter vises i stedet for et piksel der det er for lite data. Høyre figur viser same data som til venstre, men med annen horisontal akse.

4.4.3 Sammenligninger med tidligere kartlagte faresoner

Det ble gjort sammenligning av sannsynlighetsmodellen og NVEs tidligere kartlagte kvikkleire faresoner (Figur 21). En slik sammenligning har en begrenset nytte siden faresoner ikke bare tar hensyn til forekomst av kvikkleire, men andre faktorer (f. eks., helning, erosjon, osv.). Likevel er det noen interessante observasjoner:

- Først og fremst er det veldig god sammenheng mellom overgang fra høy til lav sannsynlighet mot vest og sørvest og grensene av faresoner i disse områder. Derimot er det ikke alltid en tydelig sammenheng mellom sannsynlighet og faregrad (lav eller middels), en bekreftelse på at geofysikken analyserer materialet og ikke områdestabiliteten.
- Ifølge sannsynlighetsmodellen er det en spesiell høy sannsynlighet øst for Teigebyen, men ifølge NVEs kartlegging er det kun en overlappende faresone med lav faregrad i deler av dette området: Oppengelsrud (ID 529)
- Sannsynlighetsmodellen er tvetydig vest og sørvest for Teigebyen der hverken høye eller lave verdier finnes. De overlappende faresonene i området er:
 - o Vestby (ID 534)
 - o Linderud (536)
 - Nannestad prestegård (532)
 - o Kjønstad (533)
- De nordligste faresonene Totner (548) og Mjælberg (547) har veldig lav sannsynlighet for sprøbruddmateriale ifølge sannsynlighetsmodellen. Dette

kan være fordi ingen borehull (verken automatiske eller manuelt tolkete) var tilgjengelige i sonene. Kun noen bergblotninger ble observert der. Samtidig passer overgangen fra høy til lav sannsynlighet med grensen mellom middels fare til lav fare i soner 548 og 547

Figur 21: Sammenligning av NVEs tidligere kartlagte faresoner med sannsynligheten for sprøbruddmateriale i de øverste 40 m av undergrunnen. Numrene i kartet er ID tallet til faresonen som er nevnt i teksten.

Dokumentnr.: 21019-01-R Dato: 2022-04-04 Rev.nr.: 0 Side: 29

5 Leveranse

Det har blitt levert digitale filer som viser det som er omtalt i rapporten. Leveransen inneholder filformater med fire hovedkategorier:

- Løsmassetykkelse / Dybde til berg
- Bergtopografi
- Sannsynlighet for sprøbruddmateriale, 3D modeller
- Sannsynlighet for sprøbruddmateriale, 2D visualiseringer

Flere forskjellige filformater er levert slik at modellen kan visualiseres på flere ulike måter med forskjellige GIS-, 3D-visualisering-, og planleggings-programvarer.

De leverte filene og hvor de er levert er nærmere beskrevet i Vedlegg A.

6 Videre arbeid

EMerald tilbyr en enkel introduksjon til bruk av 3D-visningsverktøyet Paraview hvor de leverte filene tas inn og forklares. Per rapportens leveransedato er dette planlagt for den 2022-04-05.

Resultatene fra dette prosjektet kan benyttes for å planlegge fremtidige grunnundersøkelser. For eksempel, områder der man hverken har høy eller lav sannsynlighet for sprøbruddmateriale er et tegn på at resultatet er usikkert og nye boringer kan forbedre tolkningen her. Disse forekommer i utkanten av tolkede områder med høyere sannsynlighet for sprøbruddmateriale (delkapittel 4.4.1), eller der det mangler geotekniske data (delkapittel 4.4.3).

Tolkningen av resistivitetsmodellen avhenger av tolkningen av borehullene. Tolkningsresultatene kan forbedres ikke bare med nye grunnundersøkelser, men også med nøyere tolkning av eksisterende geotekniske sonderinger. Gode, troverdige tolkninger der man har digitaliserte sonderingsdata (d.v.s, matetrykk, o.s.v.) kan forbedre ikke bare tolkning av resistivitetsmodellen, men også av den automatiserte tolkningen av andre geotekniske sonderinger i området.

En overordnet begrensning av metoden er oppløsningen av den geofysiske modellen basert på helikoptermålinger. For å øke oppløsningen av 3D modellen kan det være hensiktsmessig å hente in bakkebaserte resistivitetsmålinger langs noen utvalgte profiler. Slike data kan tas in i analysen for å øke nøyaktigheten av det integrerte produktet.

Når det foreligger nye boringer eller nye tolkninger, kan oppdateringer av de leverte modellene utføres og leveres. Pris avtales nærmere ved behov og interesse. Andre tjenester som kan diskuteres er blant annet:

- Videre trening i Paraview
- Tolkning av resistivitetsmodeller produsert av andre, for eksempel i omkringliggende områder i Romerike

EMerald Geomodelling AS www.emerald-geomodelling.com

Gaustadalléen 21 0349 Oslo

hello@emrld.no

BANK KONTO 1506 30 00806 ORG.NR 923 18 7006 MVA

Dokumentnr.: 21019-01-R Dato: 2022-04-04 Rev.nr.: 0 Vedlegg Side: 1

Vedlegg A

LEVERANSEFILER

Innhold

1	Leve	ranseplattform og oppbygging	 2
2	Leve	ranse 4. april 2022	3
			2
	2.1	Rapporter og presentasjoner	3
	2.2	Berg	3
	2.3	Sprøbruddmateriale	5
	2.4	Resistivitetsmodell	7

1 Leveranseplattform og oppbygging

Filene ble levert via SharePoint via følgende URL-lenke¹:

https://emeraldgeo.sharepoint.com/:f:/s/Clients/Er3hF_f2xSFOrzZmkWtad90B 45GqNmHHyGsttQjbs3hriA?e=zD454W

Per 04.04.2022 er tilgang til denne lenken tilgjengelig for følgende epost-kontoer:

- crgo@nve.no
- <u>tflo@nve.no</u>
- inha@nve.no
- towi@nve.no
- <u>epyt@nve.no</u>

For tilgang med ytterligere kontoer, send forespørsel via epost til <u>hello@emrld.no</u>eller til kontaktperson for prosjektet.

Lenken over gir tilgang til alle mappene med leveranser for kvikkleirekartlegging på Nannestad (Figur A1). Filene er delt inn i leveranser hvor mappenavnet angir leveransedato. I hver leveransemappe er filene knyttet til hvert leveranseprodukt samlet i nye mapper:

1) Berg

Resultater fra tolkning av løsmassetykkelse/dybde til berg, inkludert usikkerhetsanalyse, samt posisjon til geotekniske boringer og informasjon om dybde til berg brukt i tolkningen

2) Sprøbruddmateriale

Både 3D modeller og 2D visualiseringer av sannsynligheten for sprøbruddmateriale

3) Resistivitetsmodell

Resistivitetsmodellen som punktsky og 3D-rutenett

¹ Lenken korresponderer til denne mappen i EMerald Geomodellings filsystem: *Clients - Documents/NVE/21019_NO_NVE_Nannestad*

Dokumentnr.: 21019-01-R Dato: 2022-04-04 Rev.nr.: 0 Vedlegg Side: 3

Figur A1: Forklaring av mappestrukturen i denne leveransen.

2 Leveranse 4. april 2022

Datasettene er levert i koordinatreferansesystem <u>ERTS89 UTM 33N</u> og i <u>NN2000</u> høydesystem.

2.1 Rapporter og presentasjoner

Tabell A 1: Leverte rapporter og tilsvarende dokumenter.

Filnavn	Filtype	Beskrivelse
2020323_Resultater kvikkleiretolkning Nannestad_NVE.pdf	PDF	Presentasjon fra møtet med NVE, NGU
		og EMerald 2022-03-23
21019_01_R_Kvikkleirekartlegging_NVE.pdf	PDF	Prosjektets endelige rapport

2.2 Berg

Tabell A 2: Leverte filer i undermappen «berg»

Mappe	Filnavn	Filtype	Beskrivelse
triangulerte	2022-03-15_bedrock_v07_delivered.xml	LandXML	Bergmodellen som en triangulerte
	20220315_v07-bedrock_delivered.vtk	Visualization	overflate. Dataatributter forklares i
		Toolkit (VTK)	Tabell A 3.
		datafil	
punkter	20220315_v07-bedrock_delivered.csv	Komma-	Punktsky med hjørnene av den
		separert	triangulerte bergmodell.
		verdier	Dataatributter forklares i Tabell A 3.
		(enkel	
		tekstfil)	

\bigcirc

	20220315_v07-bedrock_delivered.gpkg	GeoPackage	
	20220315_v07-bedrock_delivered.shp	ESRI	
		Shapefil	
raster	bedrock_v07_depth.tif	Georeferert	Dybde til berg
		bildeformat	
	bedrock_v07_uncertainty_kriging.tif	Georeferert	Komponenten av usikkerhet som
		bildeformat	årsakes av interpolasjon (d.v.s., større avstand fra målepunkter).
	bedrock_v07_uncertainty_predict.tif	Georeferert	Komponenten av usikkerhet som
		bildeformat	årsakes av usikkerheter tolkningen av
			resistivitetsmodellen.
	bedrock_v07_uncertainty.tif	Georeferert	Total usikkerheten i dybden til berg
		bildeformat	
borehuller	2022-03-15_v07-bedrock_training-	Komma-	Borehull og bergblotninger brukte for
	boreholes-outcrops.csv	separert	å tolke bergdybde fra
		verdier	resistivitetsmodellen.
		(enkel	
		tekstfil)	
	2022-03-15_v07-bedrock_training-	GeoPackage	
	boreholes-outcrops.gpkg		
	2022-03-15_v07-bedrock_training-	ESRI	
	boreholes-outcrops.shp	Shapefil	
	2022-03-15_v07-bedrock_training-	Visualization	
	boreholes-outcrops.vtk	Toolkit (VTK)	
		datafil	

Tabell A 3: beskrivelser	[.] av dataatributter	til filer i	i undermappene	«triangulerte»	og «punkter».
				Server rearrest test	eg apanater at

Attributtnavn	enhet	beskrivelse	
Х	m	X koordinat	
Y	m	Y koordinat	
topo	m	Terrenghøyde	
depth	m	Dybde til berg	
z_bedr	m	Berkote/ berghøyde	
uncertainty	m	Total usikkerheten i dybden til berg	
uncertainty_kriging_	m	Komponenten av usikkerhet som årsakes av interpolasjon (d.v.s., større	
component		avstand fra målepunkter).	
uncertainty_	m	Komponenten av usikkerhet som årsakes av usikkerheter tolkningen av	
prediction_component		resistivitetsmodellen.	
z_bedr_upper	m	Bergkote, øvre estimat (+ 1 usikkerhetsverdi)	
z_bedr_lower	m	Bergkote, nedre estimat (- 1 usikkerhetsverdi)	
depth_upper	m	Bergdybde, øvre estimat (+ 1 usikkerhetsverdi)	
depth_lower	m	Bergdybde, nedre estimat (- 1 usikkerhetsverdi)	
distance_aem_flightline	m	horisontalavstand mellom punktet og den nærmeste flylinje	
training_sounding_id	-	ID nummer for et treningspunkt (f. Eks., borehull, bergblotning)	
aem_sounding_id	-	ID nummer for et punkt langs en flylinje	
grid_x_idx	-	ld nummer (x dimensjon) for et interpolert datapunkt	
grid_y_idx	-	ld nummer (y dimensjon) for et interpolert datapunkt	

2.3 Sprøbruddmateriale

Tabell A 4: Leverte filer i undermappen «sproebruddmateriale»

Providence 2022-03-18.brittle-clay_predict- notebook-201_aem- attributes_v07_prob_only.csv Nomma-separent verdier (enkel probuddmateriale resistivitetsmodell og geotekniske data verdier (enkel probuddmateriale resistivitetsmodell og geotekniske data verdier (NTK) attributes_v07_prob_only.vtk 2022-03-18.brittle-clay_predict- notebook-201_aem- attributes_v07_very-high- isoVol.obj Vavefront 3D object 3D volum av materiale med veldig høy (>0,7) annsynlighet for sprøbruddmaterial verdier (NTK) attributes_v07_high -high- isoVol.obj 2022-03-18.brittle-clay_predict- notebook-201_aem- attributes_v07_high -high- isoVol.obj Wavefront 3D object 3D volum av materiale med høy (0,5 - 0.7) sansynlighet for sprøbruddmaterial 2022-03-18.brittle-clay_predict- notebook-201_aem- attributes_v07_high isoVol.obj Wavefront 3D object 3D volum av materiale med middels (0,3 - 0.5) sansynlighet for sprøbruddmaterial 2022-03-21.brittle-clay_predict- notebook-201_a.cm- attributes_v07_medu- statistics_app ESRI Shapefil 2D statistikk og visualiseringer av 3D- sansynlighetsmodellen. Dataattributer forklares i Tabell A 5. 2022-03-31.brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil 2D statistikk og visualiseringer av de everste forklares i Tabell A 5. 2022-03-31.brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil 90. persentil av sannsynligheten for sprøbruddmateriale 2022-03-31.brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp Georefe	Mappe	Filnavn	Filtype	Beskrivelse
Instantion verdier (enkel artibutes, 07_prob_only, cav 2022-03-18_brittle-clay_predict- notebook-201_aem- artibutes, 07_prob_only, datafil sprøbruddmateriale resistivitetsmodell og geotekniske data 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes, 07_prob_only, vtx Wisualization Toolkit (VTR) samsynlighet for sprøbruddmaterial attributes, 07_prob_only, vtx 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes, 07_rmshiph- iscVol.obj Wavefront 3D object 3D volum av materiale med hay (0,5 - 0.7) samsynlighet for sprøbruddmaterial 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes, v07_medium-isoVol.obj Wavefront 3D object 3D volum av materiale med middels (0,3 - 0.5) samsynlighet for sprøbruddmaterial 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes, v07_medium-isoVol.obj GeoPackage 2D statistikk og visualiseringer av 3D- samsynlighet for sprøbruddmaterial 2022-03-21_brittle-clay_predict- notebook-201_Av07_vertex- statistics.gpkg ESRI Shapefil SRI Shapefil 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics.gpkg ESRI Shapefil Dataattributer of valares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics.gp40-m.ahp Georeferent bildeformat Son sprøbruddmateriale 2014 brittle_v07_sum_min-prob- Sopetuf Georeferent bildeformat Son sprøbruddmateriale 2022-03-31_brittle-		2022-03-18_brittle-clay_predict-	Komma-separert	3D rutenett av sannsynlighet for
Attributes Attributes Visualization Toolkit resistivitetsmodell og geotekniske data 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_prob_only.vtk Visualization Toolkit 3D volum av materiale med veldig hey (>0,7) sannsynlighet for sprøbruddmaterial 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_wery-high- isoVol.obj Wavefront 3D object 3D volum av materiale med neiddels (0,5 - 0,7) sannsynlighet for sprøbruddmaterial 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_high Wavefront 3D object 3D volum av materiale med middels (0,3 - 0,5) sannsynlighet for sprøbruddmaterial 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_medium-isoVol.obj Wavefront 3D object 3D volum av materiale med middels (0,3 - 0,5) sannsynlighetsmodellen. 2022-03-21_brittle-clay_predict- notebook-201A_v07_vertex- statistics.gp4 GeoPackage 2D statistikk og visualiseringer av 3D- sannsynlighetsmodellen. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics.top-40-m.gpkg ESRI Shapefil Datattributer forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp Georeferert bildeformat Sonventer tykkelse sprøbruddmateriale 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics.top-40-m.shp Georeferert bildeformat Sonventer tykkelse sprøbruddmateriale når alte tiffeller med sannsynlig		notebook-201_aem-	verdier (enkel	sprøbruddmateriale basert på
Very 2022-03.18_brittle-clay_predict- notebook-201_aem- attributes_v07_very-high- isoVol.obj Wavefront 3D SD volum av materiale med veldig høy (>0,7) sannsynlighet for sprøbruddmaterial 00 2022-03.18_brittle-clay_predict- notebook-201_aem- attributes_v07_very-high- isoVol.obj Wavefront 3D SD volum av materiale med høy (0,5 - 0,7) sannsynlighet for sprøbruddmaterial 2022-03.18_brittle-clay_predict- notebook-201_aem- attributes_v07_medium-isoVol.obj Wavefront 3D SD volum av materiale med høy (0,5 - 0,7) sannsynlighet for sprøbruddmaterial 2022-03.18_brittle-clay_predict- notebook-201_aem- attributes_v07_medium-isoVol.obj Wavefront 3D SD volum av materiale med middels (0,3 - 0,5) sannsynlighet for sprøbruddmaterial 2022-03.21_brittle-clay_predict- notebook-201A_v07_vertex- statistics sprøb GeoPackage 2D statistikk og visualiseringer av 3D- sannsynlighetsmodellen. 2022-03.21_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.gkg ESRI Shapefil Datastributer forklares i Tabell A 5. 2022-03.21_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.gkg ESRI Shapefil Datastributer forklares i Tabell A 5. 2022-03.21_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.gkg ESRI Shapefil Datastributer forklares i Tabell A 5. 2022-03.21_brittle-clay_predictr- notebook-201A_v07_vertex- statistics_top-40-m.gkg		attributes_v07_prob_only.csv	tekstfil)	resistivitetsmodell og geotekniske data
Instructure Instructure Toolkit (VTK) datafil attributes_V07_prob_only.vtk datafil 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_worhigh- isoVol.obj 3D volum av materiale med veldig hay (>0,7) sannsynlighet for sprøbruddmaterial 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_ligh Mavefront 3D object 3D volum av materiale med hieldels (0,3 - 0,7) sannsynlighet for sprøbruddmaterial 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_medium-isoVol.obj Wavefront 3D object 3D volum av materiale med middels (0,3 - 0,5) sansynlighet for sprøbruddmaterial 2022-03-18_brittle-clay_predict- notebook-201A_v07_vertex- statistics.gpdg GeoPackage 2D statistikk og visualiseringer av 3D- sansynlighetsmodellen. Dataattributer forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics.top-40-m.shp GeoPackage 2D statistikk og visualiseringer av de everste 40 m av 3D-sannsynlighetsmodellen. Dataattributer forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics.top-40-m.shp ESRI Shapefil bittle_v07_sum_min-prob- bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale 40 m av 3D-sannsynlighetem Seoreferert bittle_v07_sum_min-prob- bildeformat Georeferert bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale brittle_v07_sum_min-prob- Topct.tif		2022-03-18_brittle-clay_predict-	Visualization	
Image: statistic stop: 4 attributes, v07_prob_only.vtk datafil attributes, v07_very-high- isoVol.obj Q 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes, v07_very-high- isoVol.obj Wavefront 3D 3D volum av materiale med held (0,5 - 0,7) sansynlighet for sprøbruddmaterial Q 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes, v07_ingh Wavefront 3D 3D volum av materiale med held (0,5 - 0,7) sansynlighet for sprøbruddmaterial Q 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes, v07_medium-isoVol.obj Wavefront 3D 3D volum av materiale med middels (0,3 - 0,5) sansynlighet for sprøbruddmaterial 2022-03-21_brittle-clay_predict- notebook-201A_v07_vertex- statistics sprks GeoPackage 2D statistikk og visualiseringer av 3D- sansynlighetsmodellen. Dataattributer forklares i Tabell A 5. V0009 Q 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-mshp GeoPackage 2D statistikk og visualiseringer av de øverste 40 m av 3D-sannsynlighetsmodellen. Dataattributer forklares i Tabell A 5. Statistics_top-40-mshp ESRI Shapefil Dataattributer forklares i Tabell A 5. V00101 brittle_v07_sum_min-prob- brittle_v07_sum_min-prob- statistics_top-40-mshp Georeferent bildeformat Maskverdi av sannsynligheten for sprøbruddmateriale <t< td=""><td></td><td>notebook-201_aem-</td><td>Toolkit (VTK)</td><td></td></t<>		notebook-201_aem-	Toolkit (VTK)	
Vote 2022-03-18.brittle-clay_predict- notebook-201_aem. attributes_v07_very-high- isoVol.obj 3D volum av materiale med veldig hay (>0,7) sannsynlighet for sprøbruddmaterial 2022-03-18.brittle-clay_predict- notebook-201_aem. attributes_v07_high isoVol.obj 3D volum av materiale med høy (0,5 - 0,7) sannsynlighet for sprøbruddmaterial 2022-03-18.brittle-clay_predict- notebook-201_aem. attributes_v07_medium-isoVol.obj Wavefront 3D object 3D volum av materiale med høy (0,5 - 0,7) sannsynlighet for sprøbruddmaterial 2022-03-18.brittle-clay_predict- notebook-201_aem. attributes_v07_medium-isoVol.obj Wavefront 3D object 3D volum av materiale med høy (0,5 - 0,7) sannsynlighet for sprøbruddmaterial 2022-03-18.brittle-clay_predict- notebook-201A_v07_vertex- statistics.stpg GeoPackage 2D statistikk og visualiseringer av 3D- sannsynlighetsmodellen. Dataattributer forklares i Tabell A 5. 2022-03-21.brittle-clay_predict- notebook-201A_v07_vertex- statistics.tpp ESRI Shapefil Datastributer forklares i Tabell A 5. 2022-03-31.brittle-clay_predict- notebook-201A_v07_vertex- statistics.tpp-40-m.spp ESRI Shapefil Datastributer forklares i Tabell A 5. 2022-03-31.brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.spp ESRI Shapefil Datastributer forklares i Tabell A 5. 2022-03-31.brittle_v07_max_p-brittle.tif Georeferert bildeformat 90. persentil av sannsynlighet for sprøbruddmateriale brittle_v		attributes_v07_prob_only.vtk	datafil	
notebook-201_aem- attributes_v07_very-high- isoVol.obj object sannsynlighet for sprøbruddmaterial version 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_high isoVol.obj Wavefront 3D object 3D volum av materiale med hay (0,5 - 0,7) sannsynlighet for sprøbruddmaterial 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_medium-isoVol.obj 3D volum av materiale med middels (0,3 - 0,5) sannsynlighet for sprøbruddmaterial 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_medium-isoVol.obj GeoPackage 2D statistikk og visualiseringer av 3D- sannsynlighetsmodellen. 2022-03-21_brittle-clay_predict- notebook-2014_v07_vertex- statistics_shp GeoPackage 2D statistikk og visualiseringer av de overste forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook.2014_v07_vertex- statistics_top-40-m.spkg ESRI Shapefil Dataattributer forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook.2014_v07_vertex- statistics_top-40-m.shp ESRI Shapefil Dataattributer forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook.2014_v07_vertex- statistics_top-40-m.shp Georeferent bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale 2022-03-31_brittle-tift Georeferent bildeformat Sovertift av sannsynligheten for sprøbruddmateriale 2022-03-31_brittle-tift Georeferent bildeformat Poventet tykkelse sprøbru		2022-03-18_brittle-clay_predict-	Wavefront 3D	3D volum av materiale med veldig høy (>0,7)
Attributes_v07_very-high- isoVol.obj Attributes_v07_high isoVol.obj Mayefront 3D object 3D volum av materiale med hay (0,5 - 0,7) sannsynlighet for sprøbruddmaterial 00 2022-03-18_brittle-clay_predict- notebook.201_aem- attributes_v07_high isoVol.obj Wavefront 3D object 3D volum av materiale med middels (0,3 - 0,5) sannsynlighet for sprøbruddmaterial 01 2022-03-18_brittle-clay_predict- notebook.201_aem- attributes_v07_medium-isoVol.obj GeoPackage 2D statistikk og visualiseringer av 3D- sannsynlighet for sprøbruddmaterial 02 2022-03-21_brittle-clay_predict- notebook.201A_v07_vertex- statistics.spg GeoPackage 2D statistikk og visualiseringer av 3D- sannsynlighetsmodellen. Dataattributer forklares i Tabell A 5. 01 2022-03-31_brittle-clay_predict- notebook.201A_v07_vertex- statistics.top-40-m.sptg ESRI Shapefil 2D statistikk og visualiseringer av de øverste 40 m av 3D-sannsynlighetsmodellen. Dataattributer forklares i Tabell A 5. 02 2022-03-31_brittle-clay_predict- notebook.201A_v07_vertex- statistics.top-40-m.sptp ESRI Shapefil Dataattributer forklares i Tabell A 5. 03 brittle_v07_gout-percentile_prob- brittle_v07_soum_min-prob- 30pct.tif Georeferert bildeformat Sprøbruddmateriale 021 brittle_v07_soum_min-prob- 70pct.tif Georeferert bildeformat Porventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes		notebook-201_aem-	object	sannsynlighet for sprøbruddmaterial
isoValobj isoValobj 2022.03.18_brittl-clay_predict- natributes_v07_highhigh- isoVal.obj Wavefront 3D object 3D volum av materiale med høy (0,5 - 0,7) sannsynlighet for sprøbruddmaterial 0 2022.03.18_brittl-clay_predict- natebook.201_aem- attributes_v07_medium-isoVal.obj Wavefront 3D object 3D volum av materiale med middels (0,3 - 0,5) sannsynlighet for sprøbruddmaterial 0 2022.03.21_brittle-clay_predict- natebook.201_aem- attributes_v07_medium-isoVal.obj GeoPackage 2D statistikk og visualiseringer av 3D- sansynlighetsmodellen. Dataattributer forklares i Tabell A 5. 0 2022.03.21_brittle-clay_predict- natebook.201A_v07_vertex- statistics.shp ESRI Shapefil 2D statistikk og visualiseringer av de øverste 40 m av 3D-sannsynlighetsmodellen. Dataattributer forklares i Tabell A 5. 0 2022.03.21_brittle-clay_predict- natebook.201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil Dataattributer forklares i Tabell A 5. 0 brittle_v07_max_p-brittle.tif Georeferert bildeformat 90. persentil av sannsynlighetsmodellen. Dataattributer forklares i Tabell A 5. 0 brittle_v07_sum_min-prob- 30pct.tif Georeferert bildeformat Porventet tykkelse sprøbruddmateriale 0 brittle_v07_sum_min-prob- 70pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller hayere brukes <td></td> <td>attributes_v07_very-high-</td> <td></td> <td></td>		attributes_v07_very-high-		
2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_medium-isoVol.obj Wavefront object 3D volum av materiale med høy (0,5 - 0,7) sannsynlighet for sprøbruddmaterial 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_medium-isoVol.obj Wavefront object 3D volum av materiale med middels (0,3 - 0,5) sannsynlighet for sprøbruddmaterial 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_medium-isoVol.obj GeoPackage 2D statistikk og visualiseringer av 3D- sansynlighetsmodellen. Dataattributer forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_opA0-m.gpkg ESRI Shapefil notebook-201A_v07_vertex- statistics_top-40-m.gpkg ESRI Shapefil ontebook-201A_v07_vertex- statistics_top-40-m.gpkg 002 brittle_v07_90th-percentile_prob- brittle.tif Georeferent bildeformat 90. persentil av sansynligheten for sprøbruddmateriale 0116_v07_90th-percentile_prob- brittle_v07_sum_min-prob- 30pct.tif Georeferent bildeformat 90. persentil av sansynligheten for sprøbruddmateriale 0216_v07_sum_min-prob- topct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tifeller med sansynlighet på 30% eller høyere brukes 0216_v07_sum_min-prob- topct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tifeller med sansynlighet på 70% eller høyere brukes Som ellelagtykkelse.		isoVol.obj		
notebook-201_aem- attributes_v07_high object -high- solock sannsynlighet for sprøbruddmaterial 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_medium-isoVol.obj Wavefront 3D 3D volum av materiale med middels (0,3 - 0,5) sannsynlighet for sprøbruddmaterial 2022-03-18_brittle-clay_predict- notebook-201A_v07_vertex- statistics.sprøp GeoPackage 2D statistikk og visualiseringer av 3D- sannsynlighetsmodellen. 2022-03-21_brittle-clay_predict- notebook-201A_v07_vertex- statistics.sprøp ESRI Shapefil Forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.gpkg GeoPackage 2D statistikk og visualiseringer av de øverste 40 m av 3D-sannsynlighetsmodellen. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp Georeferert bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale 2022-03-31_brittle-lay_predict- notebook-201A_v07_wertex- statistics_top-40-m.shp Georeferert bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale 2022-03-31_brittle-lay Georeferert bildeformat Forventet tykkelse sprøbruddmateriale Solockeller hortes 2022-03-11 brittle_v07_sum_min-prob- 30pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale Solockeller hayere brukes 2022-03-10 brittle_v07_sum_p		2022-03-18_brittle-clay_predict-	Wavefront 3D	3D volum av materiale med høy (0,5 - 0,7)
Attributes_v07_high -high- isoV0.obj Attributes_v07_high -high- isoV0.obj 2022-03.18_brittle-clay_predict- notebook-201_aem- attributes_v07_medium-isoVol.obj GeoPackage 2D statistikk og visualiseringer av 3D- sannsynlighet for sprøbruddmaterial 2022-03.21_brittle-clay_predict- notebook-201A_v07_vertex- statistics.gpkg GeoPackage 2D statistikk og visualiseringer av 3D- sannsynlighetsmodellen. 2022-03.21_brittle-clay_predict- notebook-201A_v07_vertex- statistics.shp ESRI Shapefil 2D statistikk og visualiseringer av de øverste 40 m av 3D-sannsynlighetsmodellen. 2022-03.31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.gpkg GeoPackage 2D statistikk og visualiseringer av de øverste 40 m av 3D-sannsynlighetsmodellen. 2022-03.31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil Datattributer forklares i Tabell A 5. 2022-03.31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil Datattributer forklares i Tabell A 5. 2022-03.31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp Georeferent bildeformat Maskverdi av sannsynligheten for sprøbruddmateriale brittle_v07_sum_min-prob- 30pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale brittle_v07_sum_min-prob- 30pct.tif Georeferent bildeformat Forventet tyk		notebook-201_aem-	object	sannsynlighet for sprøbruddmaterial
isoVol.obj isoVol.obj 2022-03:18_brittle-clay_predict- notebook-201_aem- attributes_v07_medium-isoVol.obj Wavefront 3D object 3D all volum av materiale med middels (0,3 - 0,5) sansynlighet for sprøbruddmaterial 2022-03:21_brittle-clay_predict- notebook-201A_v07_vertex- statistics.gpkg GeoPackage 2D statistik og visualiseringer av 3D- sansynlighetsmodellen. Dataattributer forklares i Tabell A 5. 2022-03:21_brittle-clay_predict- notebook-201A_v07_vertex- statistics.top ESRI Shapefil 2D statistik og visualiseringer av de øverste 40 m av 3D-sansynlighetsmodellen. Dataattributer forklares i Tabell A 5. 2022-03:31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil Dataattributer forklares i Tabell A 5. 2022-03:31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil Dataattributer forklares i Tabell A 5. 2022-03:31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil Dataattributer forklares i Tabell A 5. 2022-03:31_brittle-clay_predict- notebook-201A_v07_sum_min-prob- brittle_v07_max_p-brittle.tif Georeferent bildeformat Maskverdi av sannsynligheten for sprøbruddmateriale 4 brittle_v07_max_p-brittle.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes 4 brittle_v07_sum_min-prob- tip-br		attributes_v07_high -high-		
Q 2022-03-18_brittle-clay_predict- notebook-201_aem- attributes_v07_medium-isoVol.obj 3D volum av materiale med middels (0,3-0,5), sannsynlighet for sprøbruddmaterial V 2022-03-21_brittle-clay_predict- notebook-201A_v07_vertex- statistics.gpkg GeoPackage 2D statistikk og visualiseringer av 3D- sannsynlighetsmodellen. Dataattributer forklares i Tabell A 5. V09 2022-03-21_brittle-clay_predict- notebook-201A_v07_vertex- statistics.shp ESRI Shapefil Forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.gpkg GeoPackage 2D statistikk og visualiseringer av de øverste 40 m av 3D-sannsynlighetsmodellen. Dataattributer forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil Dataattributer forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil Dataattributer forklares i Tabell A 5. V09 brittle_v07_max_p-brittle.tif Georeferert bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale brittle_v07_sum_min-prob- 30pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes vastif brittle_v07_sum_min-prob- tilder/mat Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfelle		isoVol.obj		
Chemical Control notebook-201_aem- attributes_V07_medium-isoVol.obj object sannsynlighet for sprøbruddmaterial attributes_V07_medium-isoVol.obj V 2022-03-21_brittle-clay_predict- notebook-201A_V07_vertex- statistics.gpkg GeoPackage 2D statistikk og visualiseringer av 3D- sannsynlighetsmodellen. Dataattributer forklares i Tabell A 5. V000000000000000000000000000000000000		2022-03-18_brittle-clay_predict-	Wavefront 3D	3D volum av materiale med middels (0,3 - 0,5)
m attributes_v07_medium-isoVol.obj v0 2022-03-21_brittle-clay_predict- notebook-201A_v07_vertex- statistics.spkg GeoPackage 2D statistikk og visualiseringer av 3D- sansynlighetsmodellen. Dataattributer forklares i Tabell A 5. v0 v0 2022-03-21_brittle-clay_predict- notebook-201A_v07_vertex- statistics_spkg ESRI Shapefil v0 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.gpkg GeoPackage 2D statistikk og visualiseringer av de øverste 40 m av 3D-sansynlighetsmodellen. Dataattributer forklares i Tabell A 5. v0 v0 v1 v1 Dataattributer forklares i Tabell A 5. v0 v2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil brittle_v07_max_p-brittle.tif Georeferert bildeformat 90. persentil av sansynligheten for sprøbruddmateriale brittle_v07_sum_min-prob- 30pct.tif Georeferert bildeformat Porventet tykkelse sprøbruddmateriale når alle tilfeller med sansynlighet på 30% eller høyere brukes v1 brittle_v07_sum_min-prob- 70pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sansynlighet på 70% eller høyere brukes v1 brittle_v07_sum_min-prob- 70pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sansynlighet på 70% eller høyere brukes v1 brittle_v07_sum_min-prob- 70pct.tif Georeferert bildeformat Forventet tykkelse s	0	notebook-201_aem-	object	sannsynlighet for sprøbruddmaterial
Vertice 2022-03-21_brittle-clay_predict- notebook-201A_v07_vertex- statistics.gpkg GeoPackage 2D statistikk og visualiseringer av 3D- sansynlighetsmodellen. Dataattributer V00 0" 2022-03-21_brittle-clay_predict- notebook-201A_v07_vertex- statistics.spp ESRI Shapefil Dataattributer V00 0" 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.gpkg ESRI Shapefil Dataattributer forklares i Tabell A 5. V00 0" 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.gpkg ESRI Shapefil Dataattributer forklares i Tabell A 5. V00 0" persentil av sannsynlighetsmodellen. Dataattributer forklares i Tabell A 5. V00 0" persentil av sannsynligheten for sprøbruddmateriale Dataattributer forklares i Tabell A 5. V00 persentil av sannsynligheten for sprøbruddmateriale Sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes Porventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes V00 persenti Sprøbruddmateriale Sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes V10 brittle_v07_sum_min-prob- 70pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale	31	attributes_v07_medium-isoVol.obj	-	
Notebook-201A_v07_vertex- statistics.gpkg Sannsynlighetsmodellen. Dataattributer forklares i Tabell A 5. 2022-03-21_brittle-clay_predict- notebook-201A_v07_vertex- statistics.shp ESRI Shapefil 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.gpkg 202 D statistikk og visualiseringer av de øverste 40 m av 3D-sannsynlighetsmodellen. Dataattributer forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.gpkg ESRI Shapefil Dataattributer forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil Dataattributer forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp Georeferert bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale brittle_v07_max_p-brittle.tif Georeferert bildeformat Sprøbruddmateriale Nakverdi av sannsynligheten for sprøbruddmateriale brittle_v07_sum_min-prob- 50pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes brittle_v07_sum_min-prob- 50pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_min-prob- 50pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sansynlighet på 70% eller høyere brukes brittle_v07_sum_min-prob- 50pct.tif Georeferert bildeformat		2022-03-21_brittle-clay_predict-	GeoPackage	2D statistikk og visualiseringer av 3D-
statistics.gpkg forklares i Tabell A 5. V000 2022-03-21_brittle-clay_predict- notebook-201A_v07_vertex- statistics.shp ESRI Shapefil 202 tatistikk og visualiseringer av de øverste 40 m av 3D-sannsynlighetsmodellen. Datasttributer forklares i Tabell A 5. V000 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.gpkg ESRI Shapefil Datasttributer forklares i Tabell A 5. V000 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil Datasttributer forklares i Tabell A 5. V000 brittle_v07_90th-percentile_prob- brittle.v07_90th-percentile_prob- brittle_v07_sum_min-prob- 30pc.trif Georeferert bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale brittle_v07_sum_min-prob- 50pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes brittle_v07_sum_min-prob- 70pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_min-prob- 70pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_min-prob- 70pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet på 70% eller høyere brukes <td>lag</td> <td>notebook-201A_v07_vertex-</td> <td></td> <td>sannsynlighetsmodellen. Dataattributer</td>	lag	notebook-201A_v07_vertex-		sannsynlighetsmodellen. Dataattributer
1000000000000000000000000000000000000	de	statistics.gpkg		forklares i Tabell A 5.
Image: Second	or/ dyb	2022-03-21_brittle-clay_predict-	ESRI Shapefil	
Note:	D/ ekto le_e	notebook-201A_v07_vertex-		
Open 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.gpkg GeoPackage 2D statistikk og visualiseringer av de øverste 40 m av 3D-sannsynlighetsmodellen. Datattributer forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil Datattributer forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp Georeferent bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale brittle_v07_90th-percentile_prob- brittle_tif Georeferent bildeformat Maskverdi av sannsynligheten for sprøbruddmateriale brittle_v07_sum_min-prob- 30pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes brittle_v07_sum_min-prob- 70pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes brittle_v07_sum_min-prob- 70pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- thicknesst.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet med modellelagtykkelse. av brittle_v07_90th-percentiel_ p-brittle_top-40-m.tif Georeferent bildeformat 90. persentil av sannsyn	2I ve al	statistics.shp		
Inotebook-201A_v07_vertex- statistics_top-40-m.gpkg 40 m av 3D-sannsynlighetsmodellen. Dataattributer forklares i Tabell A 5. 2022-03-31_bittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil brittle_v07_90th-percentile_prob- bittle_v07_sum_min-prob- 30pct.tif Georeferert bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale brittle_v07_sum_min-prob- 30pct.tif Georeferert bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale brittle_v07_sum_min-prob- 30pct.tif Georeferert bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale brittle_v07_sum_min-prob- 30pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes brittle_v07_sum_min-prob- 70pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes brittle_v07_sum_min-prob- 70pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- thicknesst.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet med modellelagtykkelse. var brittle_v07_90th-percentiel_ p-brittle_top-40-m.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet med modellelagtykkelse. brittle_v07_max_prob-times- thicknesst.tif Georeferert	0	2022-03-31_brittle-clay_predict-	GeoPackage	2D statistikk og visualiseringer av de øverste
statistics_top-40-m.gpkg Dataattributer forklares i Tabell A 5. 2022-03-31_brittle-clay_predict- notebook-201A_v07_vertex- statistics_top-40-m.shp ESRI Shapefil brittle_v07_90th-percentile_prob- brittle.tif Georeferent bildeformat 90. persentil av sannsynligheten for sprabruddmateriale brittle_v07_max_p-brittle.tif Georeferent bildeformat Maskverdi av sannsynligheten for sprabruddmateriale brittle_v07_sum_min-prob- 30pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes brittle_v07_sum_min-prob- 50pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes brittle_v07_sum_min-prob- fopct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_min-prob- fopct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- thicknesst.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse. brittle_v07_90th-percentiel_ p-brittle_top-40-m.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse. brittle_v07_90th-percentiel_ p-brittle_	4	notebook-201A_v07_vertex-	_	40 m av 3D-sannsynlighetsmodellen.
1000000000000000000000000000000000000	rste	statistics_top-40-m.gpkg		Dataattributer forklares i Tabell A 5.
Notebook-201A_v07_vertex- statistics_top-40-m.shp notebook-201A_v07_vertex- statistics_top-40-m.shp brittle_v07_90th-percentile_prob- brittle_v07_max_p-brittle.tif Georeferent bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale brittle_v07_max_p-brittle.tif Georeferent bildeformat Maskverdi av sannsynligheten for sprøbruddmateriale brittle_v07_sum_min-prob- 30pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes brittle_v07_sum_min-prob- 50pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes brittle_v07_sum_min-prob- 50pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_min-prob- 50pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- thicknesst.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet med modellelagtykkelse. p-brittle_top-40-m.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynligheten for sprøbruddmateriale v p-brittle_v07_maximum Georeferent bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale <td>eve /</td> <td>2022-03-31_brittle-clay_predict-</td> <td>ESRI Shapefil</td> <td></td>	eve /	2022-03-31_brittle-clay_predict-	ESRI Shapefil	
Image: Statistics_top-40-m.shp statistics_top-40-m.shp brittle_v07_90th-percentile_prob- brittle.tif Georeferent bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale brittle_v07_max_p-brittle.tif Georeferent bildeformat Maskverdi av sannsynligheten for sprøbruddmateriale brittle_v07_sum_min-prob- 30pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes brittle_v07_sum_min-prob- 50pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes brittle_v07_sum_min-prob- 50pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes brittle_v07_sum_min-prob- 70pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- thicknesst.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse. variation brittle_v07_90th-percentiel_ p-brittle_top-40-m.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet for sprøbruddmateriale variatile_v07_maximum Georeferent bildeformat Sonsentil av sannsynlighet for sprøbruddmateriale variatile_	o	notebook-201A_v07_vertex-		
brittle_v07_90th-percentile_prob- brittle.tif Georeferent bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale brittle_v07_max_p-brittle.tif Georeferent bildeformat Maskverdi av sannsynligheten for sprøbruddmateriale brittle_v07_sum_min-prob- 30pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes brittle_v07_sum_min-prob- 50pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes brittle_v07_sum_min-prob- 50pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes brittle_v07_sum_min-prob- 50pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- thicknesst.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- thicknesst.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse. v brittle_v07_90th-percentiel_ p-brittle_top-40-m.tif Georeferent bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale (kun de øverste 40 m av undergrunnen) <	2D/ vek kun	statistics_top-40-m.shp		
Image: Sprittle_v07_90th-percentile_prob- brittle_tif Georeferent bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale Image: Sprittle_v07_max_p-brittle.tif Georeferent bildeformat Maskverdi av sannsynligheten for sprøbruddmateriale Image: Sprittle_v07_sum_min-prob- 30pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes Image: Sprittle_v07_sum_min-prob- 50pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes Image: Sprittle_v07_sum_min-prob- 50pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes Image: Sprittle_v07_sum_min-prob- 70pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes Image: Sprittle_v07_sum_prob-times- thicknesst.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse. Image: Sprittle_v07_90th-percentiel_ p-brittle_t0p-40-m.tif Georeferent bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale Image: Sprittle_v07_maximum Georeferent p-brittle_v07_maximum Georeferent bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale				
Image: Spinor dedinate rate Spinor dedinate rate brittle_v07_max_p-brittle.tif Georeferert Maskverdi av sannsynligheten for sprøbruddmateriale brittle_v07_sum_min-prob- Georeferert Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes brittle_v07_sum_min-prob- Georeferert Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes brittle_v07_sum_min-prob- Georeferert Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes brittle_v07_sum_min-prob- Georeferert Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- Georeferert Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- Georeferert Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse. p-brittle_v07_90th-percentiel_ Georeferert 90. persentil av sannsynlighet for sprøbruddmateriale p-brittle_top-40-m.tif bildeformat sprøbruddmateriale brittle_v07_maximum Georeferert 90. persentil av sannsynligheten for sprøbruddmateriale brittle_v07_maximum Georeferert 90. persentil av sannsynligheten for sprøbruddmat		brittle_v07_90th-percentile_prob-	Georeterent	90. persentil av sannsynligheten för
Printle_v07_max_p-bittle_till Georeferent Maskverdi av samsynligheten for bildeformat sprøbruddmateriale brittle_v07_sum_min-prob- Georeferent Forventet tykkelse sprøbruddmateriale når 30pct.tif bildeformat alle tilfeller med sannsynlighet på 30% eller brittle_v07_sum_min-prob- Georeferent Forventet tykkelse sprøbruddmateriale når 50pct.tif brittle_v07_sum_min-prob- Georeferent Forventet tykkelse sprøbruddmateriale når 100pt.tif brittle_v07_sum_prob-times- Georeferent Forventet tykkelse sprøbruddmateriale når 101pt.tif brittle_v07_sum_prob-times- Georeferent Forventet tykkelse sprøbruddmateriale når 101pt.tif brittle_v07_90th-percentiel_ Georeferent Forventet tykkelse sprøbruddmateriale når 101pt.tif brittle_v07_90th-percentiel_ Georeferent Forventet tykkelse sprøbruddmateriale 101pt.p-brittle_top-40-m.tif bilde		brittle v07 may a brittle tif	Georoforart	Magluardi av conneunligheten for
brittle_v07_sum_min-prob- 30pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes brittle_v07_sum_min-prob- 50pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes brittle_v07_sum_min-prob- 70pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes brittle_v07_sum_min-prob- 70pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- thicknesst.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse. p- grave avgrave brittle_v07_90th-percentiel_ p-brittle_top-40-m.tif Georeferert bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale (kun de øverste 40 m av undergrunnen)		bhttle_vov_max_p-bhttle.th	bildeformet	Maskverdi av sannsynligheten för
Brittle_v07_sum_min-prob- 30pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddamateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes brittle_v07_sum_min-prob- 50pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes brittle_v07_sum_min-prob- 70pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- thicknesst.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse. brittle_v07_90th-percentiel_ p-brittle_top-40-m.tif Georeferent bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale (kun de øverste 40 m av undergrunnen) brittle v07 maximum Georeferent bildeformat 90. parsentil av sannsynligheten for sprøbruddmateriale			Casasferrent	sprøbruddmateriale
Soper.til Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes Soper.tif brittle_v07_sum_min-prob- 50pct.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes Soper.tif brittle_v07_sum_prob-times- thicknesst.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes Brittle_v07_sum_prob-times- thicknesst.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse. Brittle_v07_90th-percentiel_ p-brittle_top-40-m.tif Georeferert bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale (kun de øverste 40 m av undergrunnen) Brittle v07 maximum Georeferert Maskverdi av sannsynligheten		brittle_v07_sum_min-prob-	Georeterert	Forventet tykkelse sprøbruddmateriale har
brittle_v07_sum_min-prob- 50pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes brittle_v07_sum_min-prob- 70pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- thicknesst.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- thicknesst.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse. brittle_v07_90th-percentiel_ p-brittle_top-40-m.tif Georeferent bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale (kun de øverste 40 m av undergrunnen) brittle v07 maximum Georeferent Bildeformat Maskverdi av sannsynligheten for		Soper.m	bildelomat	ane unener med sannsynlighet på 50% eller
Brittle_v07_sum_min-prob- 50pct.tif Georeferent bildeformat Porventet tykkelse sprøbruddamateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes brittle_v07_sum_min-prob- 70pct.tif brittle_v07_sum_min-prob- 70pct.tif Georeferent bildeformat Forventet tykkelse sprøbruddamateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- thicknesst.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes brittle_v07_sum_prob-times- thicknesst.tif Georeferent bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse. p- brittle_v07_90th-percentiel_ p-brittle_top-40-m.tif Georeferent bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale (kun de øverste 40 m av undergrunnen) brittle v07 maximum Georeferent bildeformat Maskverdi av sannsvnligheten for			Casadanant	To provide blukes
Soperation Soperation <td></td> <td>50pct tif</td> <td>Georeterent</td> <td>Forventet tykkelse sprøbruddmateriale har</td>		50pct tif	Georeterent	Forventet tykkelse sprøbruddmateriale har
Brittle_v07_sum_min-prob- Georeferert Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes Argent brittle_v07_sum_prob-times- Georeferert Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes Brittle_v07_sum_prob-times- brittle_v07_sum_prob-times- Georeferert Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse. Brittle_v07_90th-percentiel_ Georeferert 90. persentil av sannsynligheten for sprøbruddmateriale Brittle_v07_90th-percentiel_ Georeferert 90. persentil av sannsynligheten for sprøbruddmateriale Brittle_v07_maximum Georeferert Maskverdi av sannsvnligheten for		50pet.th	bildeloffiat	ane tinener med samsynlighet på 50% ener
Dirtite_v07_sum_min-prob- Georeferent Porventet tykkelse sprøbruddamateriale når 70pct.tif bildeformat alle tilfeller med sannsynlighet på 70% eller brittle_v07_sum_prob-times- brittle_v07_sum_prob-times- Georeferent brittle_v07_sum_prob-times- Georeferent Forventet tykkelse sprøbruddamateriale når brittle_v07_sum_prob-times- Georeferent Forventet tykkelse sprøbruddamateriale når brittle_v07_sum_prob-times- Georeferent Forventet tykkelse sprøbruddamateriale når brittle_v07_90th-percentiel_ Georeferent Forventet tykkelse. p-brittle_top-40-m.tif Georeferent 90. persentil av sannsynligheten for brittle v07 maximum Georeferent Maskverdi av sannsvnligheten			Casadanant	Texentet tubleles envelopedeneterials and
Image: state of the state	ğ	Drittle_v07_sum_min-prob-	Georeterent	Forventet tykkelse sprøbruddmateriale har
Open Implete blokes implete blokes brittle_v07_sum_prob-times- thicknesst.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse. implete blokes brittle_v07_sum_prob-times- thicknesst.tif Georeferert bildeformat Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse. implete blokes brittle_v07_90th-percentiel_ p-brittle_top-40-m.tif Georeferert bildeformat 90. persentil av sannsynligheten for sprøbruddmateriale (kun de øverste 40 m av undergrunnen) implete blokes brittle v07 maximum Georeferert Maskverdi av sannsvnligheten for	dela	/opet.in	bildelofinat	ane tinener med samisynnighet på 70% ener
Image: Second	ybc	brittle v07 sum prob times	Gooroforart	Forventet tylkolog, sprøbruddmatoriale, pår
Image: Second and Second an	/ ter/	thicknosst tif	bildoformat	man ganger sannsunlighet med
brittle_v07_90th-percentiel_ p-brittle_top-40-m.tif brittle_v07_maximum brittle_v07_maximum brittle_v07_maximum Georeferert Georeferert Maskverdi av sannsvnligheten for Maskverdi av sannsvnligheten for	2D. ras alle	thesst.th	bildeloffiat	man ganger sannsynnghet med
p-brittle_top-40-m.tif bildeformat (kun de øverste 40 m av undergrunnen)		brittle v07 90th persential	Gooroforat	00 porcontil ov connemicator for
p-ontile_top-40-in.til bilderofinat spiporudofinatenale (kun de øverste 40 m av undergrunnen) > brittle v07 maximum Georeferert Maskverdi av sannsvnligheten for	a)	philie_vu/_vui-percentiei_	bildoformat	50. persenui av sannsynligheten för sprøbruddmatoriale
> 8 brittle v07 maximum Georeferert Maskverdi av sannsvnligheten for	rste	p-bnttle_t0p-40-m.tll	bildeloifilat	(kun da gyarsta 10 m ay undargruppan)
n so i puttie vuz maximum i depreterert i Maskverdi av sannsvnildneten for i	eve ,	brittle v07 mavimum	Gooroforat	Madwordi av connounlichaton for
b c p brittle top 10 m tif	/ ter/	philie_vo/_maximum_	bildoformat	sprøbruddmatoriale
\bigcirc	2D 2D 4ur	p-ontile_top-40-m.m	Silucionnal	(kun de øverste 40 m av undergruppen)

\bigcirc

	brittle_v07_thickness_brittle_min- prob-30 top-40-m.tif	Georeferert bildeformat	Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller	
			høyere brukes	
			(kun de øverste 40 m av undergrunnen)	
	brittle_v07_thickness_brittle_min-	Georeferert	Forventet tykkelse sprøbruddmateriale når	
	prob-50_top-40-m.tif	bildeformat	alle tilfeller med sannsynlighet på 50% eller	
			høyere brukes	
			(kun de øverste 40 m av undergrunnen)	
	brittle_v07_thickness_brittle_min-	Georeferert	Forventet tykkelse sprøbruddmateriale når	
	prob-70_top-40-m.tif	bildeformat	alle tilfeller med sannsynlighet på 70% eller	
			høyere brukes	
			(kun de øverste 40 m av undergrunnen)	
	brittle_v07_thickness_	Georeferert	Forventet tykkelse sprøbruddmateriale når	
	conservative_brittle_top-40-m.tif	bildeformat	man ganger sannsynlighet med	
			modellelagtykkelse.	
			(kun de øverste 40 m av undergrunnen)	
	2021-11-	Komma-separert	De automatiserte tolkninger av sannsynlighet	
	15_borehole_predictions_	verdier (enkel	for sprøbruddmateriale langs geotekniske	
	qc_delivered.csv	tekstfil)	borehull, basert på sonderingskurver (d.v.s,	
	2021-11-15_borehole_	Visualization	matetrykk). Noen manuelle justeringer og	
	predictions_qc.vtk	loolkit (VIK) datafil	kvalitetssikring er inkluderte.	
			Attributtet «prob_brittle_qc», som	
			inneholder sannsynlighetsverdien, ble satt til	
ller			«NaN» eller -9999 under kvalitetssikring når	
nha			sonderinger var tvetydig og kunne ikke tolkes	
OCE			manuelt med sikkerhet.	
a's	NVE-interpreted-boreholes.vtk	Visualization	Tolkninger utført av NVE på gamle, ikke	
gue		Toolkit (VTK)	digitaliserte geotekniske sonderinger, levert	
		datafil	til EMerald i februar 2022.	

Tabell A 5: beskrivelser av dataatributter i filene i undermappen «2D/vektor»

Attributtnavn	enhet	beskrivelse	
max_p_brittle		Maksverdi av sannsynligheten for sprøbruddmateriale	
median_p_brittle		Medianverdi (eller 50. persentil) av sannsynligheten for sprøbruddmateriale	
pct90_p_brittle		90. persentil av sannsynligheten for sprøbruddmateriale	
х	m	X koordinat	
у	m	Y koordinat	
thk_consv	m	Forventet tykkelse sprøbruddmateriale når man ganger sannsynlighet med modellelagtykkelse.	
thk_min30	m	Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 30% eller høyere brukes	
thk_min50	m	Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 50% eller høyere brukes	
thk_min70	m	Forventet tykkelse sprøbruddmateriale når alle tilfeller med sannsynlighet på 70% eller høyere brukes	
dist_aem	m	horisontalavstand mellom punktet og den nærmeste flylinje	
max_depth	m	Maks dybde tatt in beregningen (enten 40 m eller dybde til berg til den nærmeste	
		halvmeter)	
topo	m	Terrenghøyde	

2.4 Resistivitetsmodell

Tabell A 6: Leverte filer i undermappen «resistivitetsmodell»

Filnavn	Filtype	Beskrivelse
20211112_AEM_grid_simplified.csv	Komma-separert	Resistivitetsmodell, interpolerte til en
	verdier (enkel	50 m rutenett
	tekstfil)	
20211112_AEM_grid_simplified.vtk	Visualization	
	Toolkit (VTK)	
	datafil	
20211112_AEM_grid_simplified_over-DOI.vtk	Visualization	Resistivitetsmodell, interpolerte til en
	Toolkit (VTK)	50 m rutenett, med deler av modellen
	datafil	under penetrasjonsdybde eller mer
		enn 75 m fra en utført flylinje tatt vekk.

Tabell A 7: beskrivelser av dataatributter i resistivitetsmodellen

Attributtnavn	enhet	beskrivelse	
above_doi		Binærverdi som viser om punktet ligger over (=1) eller under	
		(=0) penetrasjonsdybden	
above_dtb		Binærverdi som viser om punktet ligger over (=1) eller under	
		(=0) bergtopografi	
doi_lower	m	Penetrasjonsdybde, standard estimat	
doi_upper	m	Penetrasjonsdybde, konservativ estimat	
flightline_sounding_id		ID nummer for et punkt langs en flylinje	
flightlines_idx_dist	m	horisontalavstand mellom punktet og den nærmeste flylinje	
layer_bottom_depth	m	Dybde til bunnen av et lag i resistivitetsmodellen	
layer_id		Lagnummer i resistivitetsmodellen.	
layer_thickness	m	Tykkelse av et lag i resistivitetsmodellen	
resist	Ωm	Elektrisk resistivitet	
resist_log10	log10(Ωm)	Elektrisk resistivitet, logaritmiske verdier	
topo	m	Terrenghøyde	
х	m	X koordinat	
xidx		ld nummer (x dimensjon) for et interpolert datapunkt	
у	m	Y koordinat	
yidx		ld nummer (x dimensjon) for et interpolert datapunkt	
Z	m	Høyde (z dimensjon)	

Dokumentnr.: 21019-01-R Dato: 2022-04-04 Rev.nr.: 0 Vedlegg Side 1 av 14

Vedlegg B

GEOSKANNING – METODEBESKRIVELSE

Innhold

1	Meto	ode	2
	1.1	Bruksområde	2
	1.2	Målemetode	3
	1.3	Dekning og oppløsning	4
	1.4	Usikkerhet	6
2	Feltu	itstyr	6
3	Data	prosessering	7
4	Tolkning av bergdybde		
5	Sann	synlighet for sprøbruddmateriale	9
6	Referanser		13

Dokumentnr.: 21019-01-R Dato: 2022-04-04 Rev.nr.: 0 Vedlegg Side 2 av 14

1 Metode

1.1 Bruksområde

Geoskanning eller AEM (Airborne Electromagnetics) kan benyttes for å kartlegge grunnens elektriske resistivitet (den inverse av elektrisk ledningsevne) i et stort område på kort tid. Metoden var tradisjonelt mye brukt til malmleting, men systemene brukt til dette har begrenset oppløsning og nøyaktighet for geotekniske formål [1]. Moderne systemer gir derimot så høy oppløsning at metoden også kan brukes i hydrogeologiske og geotekniske prosjekter [2].

Resistiviteten til et materiale sier noe om hvor godt materialet leder strøm, og ulike materialer har ulik resistivitet (Figur 1 og Figur 2). Et materiale med lav resistivitet leder godt, mens et med høyere resistivitet leder mindre godt.

Sedimenter

Typisk har saltholdig marin leire lav resistivitet, mens resistiviteten øker med minkende saltinnhold (utvasket leire) eller økende silt-/sanninnhold. Sand, grus og morene er karakterisert av høyere resistivitetsverdier. Det er derfor for eksempel mulig å skille saltholdig leire fra utvasket leire (potensiell kvikkleire) [3].

Figur 1: Typiske resistivitetsverdier for ulike sedimenter.

Berggrunn

Fast magmatisk/metamorft berg er karakterisert av svært høye resistivitetsverdier. Sandstein har en noe lavere resistivitet, mens skifer er karakterisert av forholdsvis lave resistivitetsverdier. På grunn av det høye sulfidinnholdet i svarskifer er denne karakterisert av svært lave resistivitetsverdier og svartskifer kan derfor skilles fra annen leirskifer og andre bergarter. Større svakhetssoner i berg vil også kunne identifiseres som mindre resistive områder grunnet oppknust materiale og ofte høyere vanninnhold.

Figur 2: Typiske resistivitetsverdier for ulike bergarter og svakhetssoner/dypforvitring i berg.

Grunnens resistivitetsfordeling kan derfor relateres til geoteknisk relevante parametere som overgang fra løsmasser til berg, type sediment eller berg og potensielle svakhetssoner i berg, avhengig av områdets geologi og løsmassedekke. Jo lavere resistivitetskontrast det er mellom ulike materialer, desto vanskeligere er det å kartlegge grensen mellom de respektive lag eller objekter. Skarpe overganger i geologien vil bli avbildet som glatte overganger i resistivitetsmodellen på grunn av beregningsmetoden. Det er derfor ikke alltid like lett å peke eksakt på overgangen mellom ulike litologier i resistivitetsdataene, og det vil derfor være en usikkerhet knyttet til tolkningen av disse overgangene. Med boringer tilgjengelig og en integrert tolkning med hjelp av maskinlæring minker denne usikkerheten betydelig (se nedenfor).

1.2 Målemetode

AEM-metoden er basert på det fysiske prinsippet om elektromagnetisk induksjon. Antennesystemet som benyttes i prosjektet består av en stor, sirkulær primærspole hvor det settes på strøm og et sterkt magnetfelt opprettes i bakken (Figur 3). Primærspolen skrus så av, og det induseres elektriske strømmer i bakken som diffunderer nedover og utover. Endringsraten til det sekundære magnetfeltet disse elektriske strømmene produserer registreres med en mindre sekundærspole. Styrken på sekundærfeltet avhenger av resistivitetsfordelingen i grunnen. Denne syklusen repeteres. Målemetoden kalles et tidsdomenesystem ettersom det er hvordan responsen avtar med tid som måles. Ved hjelp av inversjon av de målte datapunkter kan grunnens resistivitetsfordeling modelleres. Antennen fraktes med et helikopter.

En mer utfyllende metodebeskrivelse kan finnes i [4].

Figur 3: Prinsippet for AEM-målinger. En elektrisk strøm i antennen (hvit stiplet linje) induserer et magnetfelt (hvit dottet linje) som igjen genererer elektriske strømmer i bakken (gul stiplet linje) og et sekundert magnetfelt (gul dottet linje). Denne sekundære magnetiske responsen måles i mottakerspolen på antennen.

1.3 Dekning og oppløsning

Undersøkelsesdybden varierer fra noe få titalls meter til omlag 300 m, avhengig av geologi og løsmassetype, antennesystem og flyforhold (støy og infrastruktur). Den dybden man har en sikker modell kalles *depth of investigation* (DOI). Man kan likevel ha data under DOIen, men det er knyttet større usikkerhet til resultatet her. Resultater under DOIen er visualisert som delvis gjennomsiktige modeller.

Opptil 300 km flylinjer kan samles inn daglig, eller ca. 30 km² dersom en linje gir ca. 100 m bred dekning. Den nominelle avstanden mellom bakken og selve AEMmåleutstyret er vanligvis 30 m, men blir noe høyere over skogsområder, kraftlinjer eller andre hindringer. Nøyaktigheten i de innsamlede AEM-dataene avhenger hovedsakelig av utstyret som benyttes og flymønsteret.

Den vertikale oppløsningen kan være så god som 1-2 m nærmest overflaten (avhengig av antennesystem), og blir gradvis dårligere med dybden. Skarpe overganger i grunnen vil bli avbildet som mer eller mindre utglattede overganger i resistivitetsmodellen pga. beregningen. Det er derfor viktig å legge inn enkelte grunnundersøkelser som en "kalibrering" i beregningene for å få en så god modell som mulig.

Den laterale oppløsning er bestemt av volumet der det induseres strømmer og avstanden mellom målepunktene langs flylinjen, som vanligvis er 25-30 meter. Typisk estimerer man at mer enn 90 % av signalet fra bakken kommer fra en omkrets lik 3-4 ganger antennens flyhøyde. Det vil si at én måling "ser" en halvsfære med 100 til 150 meters diameter og tilsvarer dermed en gjennomsnittsverdi over dette området. Mellom flylinjene bestemmes oppløsningen av linjeavstanden som er ca. 100 meter. Oppløsningen påvirkes i tillegg av prosesseringsmåten. Erfaring viser at strukturer som faller brattere en 30 grader blir noe feilaktig avbildet i den beregnede modellen og fremstår ofte slakere. Det finnes andre prosesseringsverktøy som er bedre tilpasset vertikale strukturer.

Figur 4: Øverste figur viser en modell med typisk geologi med løsmasser mot en fjellknaus og fotavtrykket til AEM-systemet. Midterste figur viser hvordan AEM-modellen og "pant leg" artefaktene vil se ut i et slikt område. Nederste figur viser en modell fra målinger utført i slike geologiske forhold.

I områder med rask overgang fra berg i dagen til tykke løsmasseavsetninger kan 3D effekten kaldt "pant leg" skape utfordringer med tolkningen (Figur 4). Ettersom målemetoden "ser" et område på 100-150 meter i diameter vil man når man flyr nær overgangen mellom løsmasser og berg i dagen få en måling som er påvirket av både løsmassene og berget.

1.4 Usikkerhet

Hus, strømførende kabler, vei, jernbaneskinner og tilsvarende infrastruktur vil kunne gi støy i dataene som påvirker datakvaliteten og dermed påliteligheten i modellene. Der hvor dataene er påvirket av slik infrastruktur vil anomalier som ikke reflekterer geologien i området oppstå i modellene. Dataene må derfor fjernes for å unngå mistolkninger.

Også der hvor det er berg i dagen som er svært resistivt eller svært tynt løsmassedekket vil det ofte være vanskelig å produsere modeller på grunn av lavt datasignal. Det vil da oppstå hull i dataene, men på grunn av signalets karakteristikk er det rimelig å anta at dybde til berg i disse områdene er liten.

I områder hvor det er liten resistivitetskontrast mellom ulike lag kan det være utfordrende å skille lag i modellen, og det blir derfor høyere usikkerhet i tolkningen. Eksempler på dette er områder med morene eller andre resistive løsmasser over mer resistivt berg, eller leire over skifer. I disse områdene er man avhengig av boringer for å få en god tolkning av bergtopografien

2 Feltutstyr

Målingene er utført med et SkyTEM 304 system (SkyTEM surveys ApS, Danmark) med 341 m² primærantenne og 4 strømsløyfer. Det er et såkalt dual moment system hvor det veksles mellom å sende strøm gjennom en og alle fire strømsløyfer. Ved lavt moment sendes det strøm gjennom en sløyfe, som gir høy oppløsning nær overflaten. For høyt moment brukes alle fire strømsløyfene og det store magnetiske momentet som genereres tillater større penetreringsdybde. Systemet sikrer dermed god oppløsning nær overflaten samtidig som god penetreringsdybde tillates. Systemet har følgende spesifikasjoner for henholdsvis lavt og høyt magnetisk moment:

Ô

Modus	Lavt magnetisk moment	Høyt magnetisk moment
Magnetisk peak moment	3 000 NIA	160 000 NIA
Impulsvarighet	800 µs	2500 µs
Tid mellom impulsene	738 µs	4167 µs
Målefrekvens	325 Hz	75 Hz

Tabell 1: Spesifikasjoner for lavt og høyt magnetisk moment.

Systemet fraktes med et helikopter og flyhastigheten er omtrent 80-100 km/t. Dataene samles inn ved å fly parallelle linjer med en nominell linjeavstand på ca. 100 m.

3 Dataprosessering

Den horisontale avstanden mellom datapunktene (bin spacing) er omkring 30 m etter stabling i forbindelse med prosesseringen.

I første omgang benyttes et automatisk prosesseringsfilter som fjerner støy fra dataene. Selv om det meste av støyen er fjernet med denne prosesseringen, vil noe data med støy slippe gjennom filtrene, spesielt relatert til strømledninger eller lignende. I så fall vil modellen vise feil resistiviteter på de tilsvarende stedene.

For å forbedre kvaliteten av dataene må de gjennom en manuell prosessering. Det første trinnet i den manuelle prosesseringen er å revurdere støydata som ble fjernet under den automatiske prosesseringen og eventuelt ta de inn i igjen. Videre må rådata renses ytterligere for støy som ikke ble fjernet av den automatiske prosesseringen. Hver måling består av mange datapunkter og det må vurderes manuelt hvilke som skal brukes i beregningene (inversjonsberegningene).

Det beregnes deretter en todimensjonal resistivitetsmodell for hver flylinje (Laterally Constrained Inversion). Resistivitetsmodellene kontrolleres mot måledata, og der måledata ikke samsvarer godt nok med modelldata blir måledataene vurdert om igjen. Hvis måledataene er vurdert å være påvirket av støy, blir de fjernet fra datasettet.

Etter kontrollen av den todimensjonale resistivitetsmodellen inverteres dataene igjen for å lage en tredimensjonal resistivitetsmodell (Spatially Constrained Inversion) for hele undersøkelsesområdet.

Alle prosesseringer og beregninger gjøres i programvarepakken Aarhus Workbench.

4 Tolkning av bergdybde

Leveransen består vanligvis bergoverflatemodell 3D av en i oq løsmassetykkelse/bergdybde. Tolking av løsmassetykkelse fra AEM-resistivitetsmodellen blir utført med et nevralt nettverk, som er en type maskinlæringsverktøy. Slike nettverk tar først inn treningsdata for å lære korrelasjonen mellom ulike typer data. Vanligvis er det snakk om bergdybdemålinger fra boringer og observasjoner av berg i dagen som overlapper med AEM-modellene. Borehullsdata må vanligvis være innen 75 m fra en AEM-modell for å kunne brukes som gyldig treningsdata.

Etter treningsfasen kan nettverket deretter brukes til å predikere bergdybde der hvor det finnes AEM-målinger men ikke bergdybdemålinger og dermed få en flate i 2D eller 3D som beskriver bergoverflaten i hele området. Denne leveransen kan ta form som en triangulert overflate eller et rastergrid.

Selv etter treningsfasen kan modellen trenge manuelle tolkninger. Der det finnes lite eller ingen treningsdata og hvor det er liten kontrast i resistivitetsmodellen eller komplisert geologi, kan det være utfordrende for maskinlæringsalgoritmen å beregne en fornuftig overflate. Da må annen tilgjengelig informasjon som løsmassekart og visuell inspeksjon av dataene brukes for å legge inn manuelle tolkningspunkter. Disse blir da brukt som treningspunkter for å forbedre tolkningen.

For å lage en overflate må man interpolerer verdier mellom alle datapunkter. *Kriging* er en avansert interpoleringsmetode som baseres på geostatistikk. Algoritmen gjør først statistisk modellering for å vurdere over hvilken lengde dataene korrelerer. Denne statistiske modellen brukes deretter for å finne den optimale måten å vekte nære datapunkter, på hver interpolasjonslokasjon. Fordelen med denne metoden er at man også kan beregne usikkerheten som introduseres med interpolasjonen i tillegg til usikkerheten i dataene selv. Usikkerheten vil øke med avstand fra datapunktenes posisjon.

Det beregnes et usikkerhetsestimat for hvert prediksjonspunkt. Usikkerhetsverdien tar inn både usikkerhet fra korrelasjonen mellom resistivitetsdata og kalibreringsdata og usikkerhet i kalibreringsdataene. Usikkerheten tolkes som et standardavvik i en normalfordeling og kan leveres på flere måter, blant annet som:

- en øvre og nedre bergflate som ligger enten et standard avvik over eller under gjennomsnittsprediksjonen
- et raster-grid med usikkerhetsverdier.

Ytterlige detaljer om metoden er tilgjengelige i følgende kilder: [5,6].

5 Sannsynlighet for sprøbruddmateriale

EMerald har utviklet en totrinns prosess for å kartlegge sannsynlighet for forekomst av sprøbruddmateriale i undersøkelsesområdet (Figur 5). Metoden kombinerer elektrisk resistivitet, geotekniske boringer, tolkede boringer og labdata ved bruk av maskinlæring. Først utføres en tolkning av de geotekniske sonderingene. Resultatet eksisterende tolkninger for å trene brukes deretter sammen med en maskinlæringsalgoritme den lokale sammenhengen mellom resistivitet oq Denne sprøbruddmateriale. brukes til å predikere sannsynligheten for sprøbruddmateriale over hele resistivitetsmodellen fra geoskanningen. Ytterlige detaljer om metoden er tilgjengelige i følgende kilder: [6,7]

Figur 5: Skjematisk oversikt over modelleringsprosessen for å tolke sprøbruddmateriale basert på geotekniske og geofysiske data.

I Norge bruker man ofte omrørt skjærestyrke på 2,0 kPa eller mindre som kriterium for sprøbruddmaterial, mens for kvikkleire er det definert en lavere maksverdi på 0,5 kPa. Vi har valgt å tolke sannsynlighet for sprøbruddmateriale i stedet for sannsynligheten for kvikkleiere av flere grunner. Målinger som bekrefter kvikkleire (omrørt skjærstyrke < 0,5 kPa) er kun tilgjengelige der man har tilgjengelige prøveserier, som ofte ikke er tilfelle i et prosjektområde. Geotekniske sonderinger er ofte tilgjengelig og har en større arealdekning, men kan vanligvis ikke benyttes til å skille mellom kvikkleire og leire som er sprøbruddmateriale, men ikke definert som kvikk. I tillegg er ingeniører ofte pliktet (eller foretrekker sterkt) å undersøke videre alle mistenkte forekomster av sprøbruddmateriale. Derfor er det både bedre datagrunnlag for, og ofte større nytte av, en tolkning av sprøbruddmateriale fremfor kun kvikkleiretolkning.

Trinn 1: Tolkning av geotekniske sonderingsdata

De geotekniske boringene blir tolket for tilstedeværelse av sprøbruddmateriale (Figur 6). Dette er et viktig steg fordi prøveserier og manuelle tolkninger ofte fokuseres der det mistenkes bløt leire, mens de geofysiske dataene dekker mange forskjellige løsmassetyper. Å tolke sonderinger fra hele dekningsområdet sikrer ofte informasjon også utenfor områdene man mistenker forekomst av bløt leire og gir derfor et mer balanserte og proporsjonalt treningsdatasett. Ofte er det også få eller ingen prøveserier og/eller tolkninger tilgjengelig, og da sikrer automatisk tolkning av tilgjengelige sonderinger helt nødvendig input for videre tolkning.

EMerald Geomodelling bruker en selvutviklet algoritme for å tolke sannsynligheten for sprøbruddmaterial basert på sonderingens attributter (nedpressingskraft, nedpressingskraftens endringsrate, dybde, osv.) på en tilsvarende måte som en geoteknisk ingeniør ville gjort det. Algoritmen bruker kalibreringsdata (dvs. labbprøver med påvist kvikkleire eller tidligere tolkninger av ingeniører) fra både det aktuelle prosjektet, men også andre geotekniske prosjekter i Norge, som treningsgrunnlag. Resultatet er sannsynlighetsverdier for at materialet på en gitt dybde er sprøbruddmateriale eller ikke, slik som illustrert i Figur 6. Det utføres også et postprosesseringssteg som tar hensyn til kommentarer i sonderingsdataene om for eksempel spyling, økt rotasjon, eller hammerslag. I slike tilfeller antas sannsynligheten for sprøbruddmateriale som svært lav. Noe manuell kvalitetssikring maskinlæringsalgoritmens resultater er ofte nødvendig, spesielt når det er utfordringer knyttet til datakvalitet i de geotekniske dataene.

Dokumentnr.: 21019-01-R Dato: 2022-04-04 Rev.nr.: 0 Vedlegg Side 11 av 14

Force»). Boringen i A) viser intervaller med høy sannsynlighet, mens B) viser en boring hvor det er en lav sannsynlighet for sprøbruddmateriale.

Trinn 2: Tolkning av geoskanningsdata

Der det er tilstrekkelig overlapp mellom geotekniske boringer og data fra geoskanningen blir en annen maskinlæringsalgoritme brukt. På bakgrunn av resultatene fra steg 1 beregnes sannsynligheten for sprøbruddmateriale basert på resistivitet fra helikopter-data, de automatiske tolkningene av sonderingene samt tilgjengelig tolket labdata eller boringer. Algoritmen bruker resistivitetsattributter (dvs. resistivitet, resistivitets endringsrate, osv.) sammen med de tolkede boringene for å avgrense 3D geometrien av volumer med mulig sprøbruddmateriale. Geografiske attributter (dvs. horisontale og vertikale koordinater) er også brukt av algoritmen for å sikre at resultatene samsvarer med boringene. Vår tidligere forskning viser at de geografiske attributter er viktige for å løse tvetydigheten i resistivitetsmodellen og for for geoskanningdataenes kompensere begrensede oppløsning, mens å resistivitetsattributter er viktige for å skape realistiske grenser mellom enheter og for å lage stabile, geologiske rimelige tolkninger [7].

Resultatet er et 3D-grid med predikasjonsverdier for sprøbruddmateriale mellom 0 - 1 (Figur 7) i hele det skannede området. En verdi på 0 angir ingen sannsynlighet og 1 høy sannsynlighet for at sprøbruddmateriale forekommer i et gitt lag i modellen. I dybde har denne modellen mer en de ca 30 lag som i resistivitetsmodellen. Dette er fordi de geotekniske dataene som er brukt som treningsdata har høyere oppløsning i dybde.

Figur 7: Et eksempel på en modell som viser tolket sannsynlighet for sprøbruddmateriale. To ulike fremvisningsformer er illustrert: vertikale snitte gjennom volumet (øverst) som angir sannsynlighet for sprøbruddmateriale eller som volumer med veldig høy (rød), høy (rosa) eller medium (grå) sannsynlighet for sprøbruddmateriale. Andre objekter som vises: tolkede borehull (vertikale sylindere) og tolket bergoverflate (hvit triangulert overflate).

Ettersom resultatet er et 3D-produkt kan det være vanskelig å presentere dette i et 2D format. Et mulig 2D produkt er tolket tykkelse av sprøbruddmateriale (Figur 8). Hvert lag i 3D-modellen har en gitt tykkelse. Ved å multiplisere sannsynlighetsverdien med lagtykkelse og summere for alle lagene får man potensielt antall meter med sprøbruddmateriale i et gitt punkt.

Prediksjon x lagtykkelse = Kvikkleiretykkelse

Figur 8: Eksempel på en 2D visualisering av resultatene fra 3D-modellen som kan fremvises i en kartløsning.

6 Referanser

- 1. Norges Geologiske Undersøkelse NGU (2015). Mapping of marine clay layers using airborne EM and ground geophysical methods at Byneset, Trondheim municipality. NGU-rapport 2015.006. Trondheim.
- 2. Christensen, C. W., Pfaffhuber, A. A., Anschütz, H., og Smaavik, T. F. (2015). Combining airborne electromagnetic and geotechnical data for automated depth to bedrock tracking. Journal of Applied Geophysics 119 (178-191).
- Anschütz, H., Bazin, S., og Pfaffhuber A. A. (2015). Towards Using AEM for Sensitive Clay Mapping - A Case Study from Norway. 1st European Airborne EM conference, Turin, Italy, Mo AEM 04.
- 4. Norges Geotekniske Institutt NGI (2014). Metodebeskrivelse AEM og eksempler på prosjekter. NGI-Rapport 20130058-02-R_NO. Oslo.
- Pfaffhuber A.A., A.O. Lysdahl, C. Christensen, M. Vöge, H. Kjennbakken, J. Mykland. 2019. Large scale, efficient geotechnical soil investigations applying machine learning on airborne geophysical models. Proceedings of the XVII European Conference on Soil Mechanics and Geotechnical Engineering, Reykjavik, Iceland.

- Lysdahl AK, Christensen CW, Pfaffhuber AA, Vöge M, Andresen L, Skurdal GH, Panzner M. 2022. Integrated bedrock model combining airborne geophysics and sparse drillings based on an artificial neural network. Engineering Geology, 297, 106484. <u>https://doi.org/10.1016/j.enggeo.2021.106484</u>
- Christensen, C.W., Pfaffhuber, A.A., Skurdal, G.H., Lysdahl, A.O.K. and Vöge, M. (2020) Large scale and efficient geotechnical soil investigations: applying machine learning on airborne geophysical models to map sensitive glaciomarine clay. 6th International Conference on Geotechnical and Geophysical Site Characterization, 7–11 September 2020, Budapest, Hungary. http://www.isc6.org/images/Cikkek/Sessions/ISC2020-468.pdf
- 8. Christensen, C.W., Harrison, E.J., Pfaffhuber, A.A. and Lund, A.K. (2021), A machine learning-based approach to regional-scale mapping of sensitive glaciomarine clay combining airborne electromagnetics and geotechnical data. Near Surface Geophysics, 19: 523-539. <u>https://doi.org/10.1002/nsg.12166</u>