		B	NE	Ν	OR
	Østfold Sandbukta –	lbanen VL, Moss – Så	stad,	-l	
			undersøk Sontrum	eiser	
	Officacionatics, (Gentrali	•	
			Akser	ptert ptert m/kommentare	r
			Ikke a Revio	akseptert (kommente der og send inn på nyt or informasjon	rt) t
			Sign:		
]
00E	For godkjenning	18.03.2021	SGO	ON	TFS
	Kevisjonen gjelaer		Utarb. av	Kontr. av	Godkj. av
Østfoldbaner	n VL, Sandbukta – Moss – Såstad,	6+7	SMS 2A		
Datarapport Områdestabi	Supplerende Grunnundersøkelser litet, Sone "Moss Sentrum"	Produsent:	NG		
		Prod.tean.nr.:		R	ev.
		Erstatning for:			
		Erstattet av:			
Prosjektnavn: Prosjektnr: 96	Sandbukta-Moss-Såstad 0168	Dokument-/teg	ningsnummer:	Rev	isjon:
		SMS-	20-A-59602		00E
R • N		FDV-dokumer	nt-/tegningsnun	nmer: FDV	/-rev.:

INNHOLDSFORTEGNELSE

1	PROSJEKTBESKRIVELSE	3
2	KONTROLL OG UTFØRELSESNIVÅ	3
3	FELTUNDERSØKELSER 3.1 Generelt 3.2 Sonderinger 3.2.1 Totalsonderinger 3.2.2 Trykksonderinger (CPTU) 3.2.3 Poretrykksmålinger 3.2.4 Prøvetaking	4 4 5 5 5 5 6
4	LABORATORIEUNDERSØKELSER4.1Generelt4.2Rutineundersøkelser4.3Treaksialforsøk4.4Ødometerforsøk	6 6 6 6

TEGNINGER

Tegning 001 Borplan, grunnundersøkelser

VEDLEGG

- Vedlegg A Totalsonderinger
- Vedlegg B Trykksonderinger
- Vedlegg C Poretrykksmålinger
- Vedlegg D Rutineundersøkelser
- Vedlegg E Treaksialforsøk
- Vedlegg F Ødometerforsøk

	Datarapport	Side:	3 av 6
	Supplerende	Dok.nr:	SMS-20-A-59602
Sandbukta-Moss-Såstad	Grunnundersøkelser	Rev.:	00E
	Områdestabilitet, Sone "Moss	Dato	18.03.2021
	Sentrum"		

1 PROSJEKTBESKRIVELSE

I forbindelse med utbygging av dobbeltspor Sandbukta-Moss-Såstad (SMS 2A) har NGI utført grunnundersøkelser i Moss sentrum for oppdragsgiver MossIA ANS. I prosjektet skal det bygges 10 km dobbeltspor på strekningen fra Sandbukta i nord til Såstad i Rygge i sør, inkludert to tunneler og en ny jernbanestasjon i Moss på ca. 800 meter (se Figur 1). Denne rapporten presenterer resultater fra grunnundersøkelser utført i forbindelse med vurdering av områdestabilitet for kvikkleiresonen Moss Sentrum.

Figur 1 Prosjektområdet for InterCity Sandbukta-Moss-Såstad.

2 KONTROLL OG UTFØRELSESNIVÅ

Utførelse av felt- og laboratorieundersøkelser plasseres i geoteknisk kategori 2 i henhold til NS-EN 1997-1:2004+A1:2013+NA:2016 avsnitt 2.1(19).

	Datarapport	Side:	4 av 6
	Supplerende	Dok.nr:	SMS-20-A-59602
Sandbukta-Moss-Såstad	Grunnundersøkelser	Rev.:	00E
	Områdestabilitet, Sone "Moss	Dato	18.03.2021
	Sentrum"		

Utførelse av felt- og laboratorieundersøkelser plasseres i pålitelighetsklasse CC/RC 1 i henhold til NS-EN 1990:2002+A1:2005+NA:2016 tabell NA.A1(901). Dette medfører prosjekterings- og utførelseskontrollklasse PKK1 og UKK1 i henhold til NS-EN 1990 tabell NA.A1(902). Sidemannskontroll (intern systematisk kontroll) utføres i henhold til NGIs styringssystem selv om kun egenkontroll er påkrevd etter Eurokode, men det er ikke krav om utvidet kontroll av geoteknisk datarapport.

3 FELTUNDERSØKELSER

3.1 Generelt

Grunnundersøkelsene i felt ble utført i perioden 17. mars til 20. mai 2020. Boremannskapene har bestått av grunnborere fra NGI. Det er benyttet beltegående borerigger.

Alle borhull er innmålt av NGI i NTM sone 10, med høydesystem NN2000, se Tegning 001. En oversikt over alle borpunkter med tilhørende undersøkelser er vist i Tabell 1.

Borprogrammet er utarbeidet av NGI. Plassering av borpunktene er vist på borplan, se Tegning 001. For beskrivelse av boremetoder, symboler og opptegning henvises det til Bilag 1.

Dorpkt	Koordinater				Me	tode	
вогркі.	Х	Y	Z	тот	CPTU	PR	ΡZ
05-001	1160237,397	109416,262	2,431	Х			
05-002	1160118,967	109414,224	8,551	Х			
05-003	1160055,392	109416,022	11,747	Х			
05-004	1159938,309	109289,148	11,898	Х			
05-005	1159925,068	109472,419	22,443	Х	Х	Х	Х
05-006	1159942,979	109448,807	15,512	Х	Х	Х	Х
05-007	1160062,114	109463,560	15,241	Х			
TOT = Tota	llsondering, CPT	U = Trykksond	ering, PR	= Prøves	serie, PZ =	= Piezon	neter

Tabell 1 Oversikt over borpunkter, koordinater og boremetoder

Tabell 2 Oversikt over opptatte sylinderprøver med dybder.

Borpunkt	Sylinderprøve		
05-005	6,0 – 7,0 m	12,0 – 13,0 m	18,0 – 19,0 m
05-006	5,0 – 6,0 m	7,0 – 8,0 m	

3.2 Sonderinger

3.2.1 Totalsonderinger

Det er utført totalsonderinger i 7 borpunkt, ref. Tabell 1, for å kartlegge grunnens relative fasthet, laggrenser og dybder til berg. Alle sonderingene er boret ca. tre meter inn i berg for sikker bergpåvisning.

En oversikt over tapt borstål som følge av stangbrudd er gitt i Tabell 3.

Tabell 3 Oversikt over tapt borstål

Borpunkt	Tapt
05-001	7 stenger

Resultatene fra totalsonderingene er vist som enkeltboringer i vedlegg A.

3.2.2 Trykksonderinger (CPTU)

Det er utført trykksonderinger (CPTU-sonderinger) i 2 borpunkt. Formålet med CPTU-sonderingene er å få en mer nøyaktig kartlegging av jordartstyper og laggrenser, samt bestemme geotekniske jordartsparametere, som blant annet jordas skjærfasthet. Under nedpressingen måles trykket (q_c) mot den koniske spissen og sidefriksjonen (f_s) mot friksjonshylsen. I tillegg måles poretrykket (u_2) like bak den koniske spissen.

Resultatene fra CPTU-sonderingene er vist som enkeltboringer i vedlegg B.

3.2.3 Poretrykksmålinger

Poretrykksmålere brukes for å måle poretrykket i grunnen. Dette brukes til beregninger av in situ spenninger og estimering av grunnvannstand.

Det er benyttet elektriske poretrykksmålere av typen Geotech PVT. Målerne er installert etter metoden beskrevet i NGF melding 6, med nedpressing i løsmasser. Det ble forboret gjennom faste lag over installasjonsdybde før måleren ble presset ned. Det er installert totalt 3 poretrykksmålere, se oversikt over alle sensorer i Tabell 4.

Resultatene fra poretrykksmålingene er vist i vedlegg C.

Borpunkt	Terrengkote [m]	Sensor nr.	Målerdybde [m]	Kote målerspiss [m]
05.005	122.44	17204	10 m	+12,44
05-005	+22,44	17203	21 m	+1,44
05-006	+15,51	17221	8 m	+7,51

Tabell 4 Oversikt over installerte poretrykksmålere. Koordinater fremgår av Tabell 1.

	Datarapport	Side:	6 av 6
	Supplerende	Dok.nr:	SMS-20-A-59602
Sandbukta-Moss-Såstad	Grunnundersøkelser	Rev.:	00E
	Områdestabilitet, Sone "Moss	Dato	18.03.2021
	Sentrum"		

3.2.4 Prøvetaking

Det er tatt opp til sammen 5 uforstyrrede sylinderprøver fra borpunkt 05-005 og 05-006. For prøvetaking er det benyttet Ø72 mm stempelprøvetaker. En oversikt over prøvetakingsdybder er vist i Tabell 2.

4 LABORATORIEUNDERSØKELSER

4.1 Generelt

Alle prøver er analysert i NGIs laboratorium i Oslo. Laboratorieprogram er utarbeidet av NGI. Det er utført standard rutineundersøkelse på alle sylinderprøvene. I tillegg er det utført kornfordelingsanalyser, bestemmelse av flyte- og utrullingsgrenser, treaksialforsøk og ødometerforsøk på utvalgte prøver.

4.2 Rutineundersøkelser

Det er utført standard rutineundersøkelse på alle sylinderprøver. Rutineundersøkelse innebærer prøveåpning med visuell materialbeskrivelse, bestemmelse av naturlig vanninnhold (w), romvekt (γ) og skjærfasthet (c_u) ved konus- og enaksiale trykkforsøk. Det er på utvalgte prøver også gjennomført måling av konsistensgrenser (w_p + w_l) og kornfordelingsanalyser.

Resultatene fra rutineundersøkelsene er presentert i vedlegg D.

4.3 Treaksialforsøk

Hensikten med treaksialforsøkene er å bestemme skjærstyrken til jordmaterialet. Det er totalt utført 5 stk. anisotrop udrenerte aktive treaksialforsøk (CAUA/CAUC) på prøver fra borpunkt 05-005 og 05-006.

Resultatene fra treaksialforsøkene er presentert i vedlegg E.

4.4 Ødometerforsøk

Hensikten med ødometerforsøk er å bestemme deformasjonsegenskapene til jordmaterialet. Som en del av laboratorieundersøkelsene er det gjennomført 4 stk. kontinuerlige ødometerforsøk (CRS) på prøver fra borpunkt 05-005 og 05-006.

Resultatene fra ødometerforsøkene er presentert i vedlegg F.

 Dreiesondering Enkel sondering Trykksondering 	 Fjellkontrollbo Dreietrykkson Totalsondering 	ring () dering () g +	Prøveserie Prøvegrop Vingeboring	\oplus	Poretry Fjell i c	kksmå Jagen	lin <u>c</u>
Borhull nr. <u>Terreng (</u> Antatt	bunn) kote fjellkote Boret d <u>y</u>	ybde + (boret i	fjell)				
BESTEMMELSEI	R:						
HENVISNINGER:							
egningstittel.		Teg	ningsnr.		Rev.		
			04				
Borplan		(001		0		
Borplan			001		0		
Borplan			001		0		
Borplan			201		0		
Borplan			201		0		
Borplan			201		0		
					0		
			201				
Borplan	bukta – Mos mrådestabilit	s - Såsta	901 9d)	Dato Status — Original format A1 Tegningens filnavn Borplan.dwg	O Tegn.	Kontr.	God
Borplan	bukta – Mos områdestabilit søkelser 25.05.20	s - Såsta et 20-22.09.202	201 201 201 201	Dato Status — Original format A1 Tegningens filnavn Borplan.dwg Målestokk 1:1000	0 Tegn.	Kontr.	

<

Dokumentnr.: 20190539-32-R Dato: 2021-03-18 Rev.nr.: 0 Vedlegg A, side: 1

Vedlegg A

TOTALSONDERINGER

2 2 2

Figurer

Innhold

A1 Metode

A2 Resultater

A3 Referanser

Figur A1-A7

A1 Metode

Totalsondering kombinerer dreietrykk og fjellkontrollboring for å bestemme lagdeling i løsmasser og dybder til fast grunn eller berg /A1/. Resultatene gir grunnlag for å identifisere jordarter og vurdere relativ fasthet i grunnen. Metoden regnes for å gi sikker fjellpåvisning ved boring mer enn 3 meter inn i berg. Sonderingen utføres ved å trykke borstenger ned i grunnen med konstant hastighet og rotasjon. For å trenge gjennom fastere lag kan økt rotasjon benyttes. Dette markeres med et kryss i sonderingsprofilet. Dersom økt rotasjon ikke er nok for å trenge gjennom faste lag benyttes spyling og slag. Dette markeres med skravur i kolonner for slag og spyling i sonderingsprofilet.

A2 Resultater

Resultatene fra sonderingene er gjengitt som enkeltboringer i figur A1-A7.

A3 Referanser

- /A1/ Veiledning for utførelse av totalsondering. Melding nr. 9, Norsk Geoteknisk Forening
- /A2/ Håndbok R211, Feltundersøkelser Statens vegvesen, august 1997

Dokumentnr.: 20190539-32-R Dato: 2021-03-18 Rev.nr.: 0 Vedlegg B, side: 1

Vedlegg B

TRYKKSONDERINGER

Innhold

B1	Metode	2
B2	Utstyr	2
B3	Resultater	2
B4	Referanser	2

Bilag

Bilag B1	Kalibreringsark CPTU-sonde 4766
÷ 0	

Figurer

Figur B1 – B2 Trykksonderinger

NGI

Dokumentnr.: 20190539-32-R Dato: 2021-03-18 Rev.nr.: 0 Vedlegg B, side: 2

B1 Metode

Trykksondering med poretrykksmåling (CPTU) benyttes for å tolke lagdelinger, jordart, lagringsbetingelser og jordartens egenskaper.

Under nedpressing måles trykket (q_c) mot den koniske spissen og sidefriksjon (f_s) mot friksjonshylsen. I tillegg måles poretrykket (u) på en eller flere steder langs sondens overflate.

B2 Utstyr

CPTU-sonderingen er utført med CPTU-sonder av typen Geotech, tabell 1 viser en oversikt over CPTU-sondenummer og tilhørende arealfaktor. Kalibreringsarkene for sondene er vist i bilag B1.

Tabell 1 CPTU-sondenummer og tilhørende arealfaktor

Sondenummer	Sondetype	Arealfaktor				
4766	Geotech	0,836				

B3 Resultater

Resultatene er vist som enkeltboringer på figur B1-B2.

B4 Referanser

- /B1/ Håndbok 211, Feltundersøkelser Statens vegvesen, april 2018
- /B2/ Veiledning for utførelse av trykksondering. Melding nr. 5, Norsk Geoteknisk Forening.

CALIBRATION CERTIFICATE FOR CPT PROBE 4766

Probe No Date of Calibration Calibrated by Run No Test Class:	4766 2019-06-03 Christoffer 1 1116 ISO 1	Hurtig	
Point Resistance	Tip	Area 10	Jcm ²
Maximum Load Range Scaling Factor Resolution Area factor (a)	50 50 1595 0,4783 0,836	MPa MPa kPa	
ERRORS Max. Temperature effect when not Temperature range 5 –40 deg. Cels	loaded sius.	13,385	kPa
Local Friction	Slo	eeve Area	a 150cm ²
Maximum Load Range Scaling Factor	0,5 0,5 3658	MPa MPa	
Resolution Area factor (b)	0,0104 0	kPa	
<u>ERRORS</u> Max. Temperature effect when not Temperature range 5 –40 deg. Cels	loaded sius.	0,281	kPa
Pore Pressure			
Maximum Load Range Scaling Factor	2 2 3721	MPa MPa	
Resolution	0,0205	kPa	
ERRORS Max. Temperature effect when not Temperature range 5 –40 deg. Cels	loaded sius.	1,639	kPa
Tilt Angle. Sca	aling Factor	: 0,93	
Range	0 - 40	Deg.	
Backup memory Temperature sensor Conductivity probe			

- . -

IC SMS Områdestabilitet		Rapport 20190	nr. 539-32-	R
CPT-sondering		Dato. 16.02.2	2021	Figur nr. B1
M - 1:200		SGO	ON KONTR.	GOOR J. ON
Borhull 05-005C Posisjon: X 1159925.07 Y 109472.42	Sonde nr. :4766 Dato boret :08.07.2020			

IC	SMS	Områdestabilitet

CPT-sondering M = 1 : 200

Borhull 05-006C Posisjon: X 1159942.98 Y 109448.81

	Rapport n	r.	
	201905	39-32-F	R
	Dato. 16.02.20	021	Figur nr. B2
	^{Tegn,} SGO	Kontr. ON	Godkj. ON
Sonde nr. :4766 Dato boret :09.07.2020			

Dokumentnr.: 20190539-32-R Dato: 2021-03-18 Rev.nr.: 0 Vedlegg C, side: 1

Vedlegg C

PORETRYKKSMÅLINGER

Innhold

C1	Metode
C2	Utstyr
С3	Installasjon
C4	Resultater
C5	Referanser

Dokumentnr.: 20190539-32-R Dato: 2021-03-18 Rev.nr.: 0 Vedlegg C, side: 2

C1 Metode

Poretrykksmålere brukes for å måle poretrykket i grunnen. Dette brukes til beregninger av in-situ spenninger og estimering av grunnvannstand, ref. /C1/ og /C2/. Det er installert totalt 3 poretrykksmålere i 2 borpunkt av NGI i forbindelse med grunnundersøkelsene.

C2 Utstyr

Det er brukt elektriske poretrykksmålere av typen Geotech PVT med minne, der hver måler er utstyrt med et identifikasjonsnummer.

C3 Installasjon

Målerne er installert etter metoden som er beskrevet i NGF melding 6, med nedpressing i løsmasser. Det ble forboret gjennom faste lag over installasjonsdybden før måleren ble presset ned i jomfruelige masser.

C4 Resultater

Det er foreløpig ikke utført noen avlesninger av poretrykksmålerne.

C5 Referanser

- /C1/ Norsk Geoteknisk Forening, «Veiledning for måling av grunnvannstand og poretrykk».
 Melding nr. 6, revisjon 1, datert 1989.
- /C2/ Statens vegvesen, «Feltundersøkelser». Håndbok R211, datert 2014.

Dokumentnr.: 20190539-32-R Dato: 2021-03-18 Rev.nr.: 0 Vedlegg D, side: 1

Vedlegg D

RUTINEUNDERSØKELSER

Innhold

D1	Prøveåpning og materialbeskrivelse	2
D2	Rutineforsøk	2
	D2.1 Romvekt	2
	D2.2 Vanninnhold	2
	D2.3 Udrenert og omrørt skjærstyrke (su) ved konusprøving	2
	D2.4 Udrenert skjærstyrke (su) ved enaksielt trykkforsøk	2
	D2.5 Flyte- (w _L) og utrullingsgrense (w _P)	3
D3	Kornfordeling	3
D4	Referanser	3

Figurer

Figur D1-D9 Rutineforsøk

Dokumentnr.: 20190539-32-R Dato: 2021-03-18 Rev.nr.: 0 Vedlegg D, side: 2

D1 Prøveåpning og materialbeskrivelse

Alle prøver registreres, åpnes og det foretas visuell klassifisering og beskrivelse av materialtype /D1/.

Resultatene er vist i figur D1-D9.

D2 Rutineforsøk

Ulike rutineundersøkelser har blitt utført av NGI.

D2.1 Romvekt

Romvekt bestemmes som gjennomsnitt for hel sylinder. Romvekt bestemmes i henhold til NS8011.

Resultatene er vist i figur D1 og D6.

D2.2 Vanninnhold

For hver prøvesylinder tas det ut to prøver for bestemmelse av naturlig vanninnhold (vekt %). Naturlig vanninnhold bestemmes i henhold til NS 8013.

Resultatene er vist i figur D1 og D6.

D2.3 Udrenert og omrørt skjærstyrke (s_u) ved konusprøving

Fra hver prøvesylinder er det tatt ut to prøver for bestemmelse av udrenert og omrørt skjærstyrke med konusprøving. Konusprøving utføres i henhold til NS8015.

Resultatene er vist i figur D1 og D6.

D2.4 Udrenert skjærstyrke (s_u) ved enaksielt trykkforsøk

Fra hver prøvesylinder er det tatt ut én prøve for bestemmelse av udrenert skjærstyrke med enaksielt trykkforsøk. Det tas også én prøve for bestemmelse av vanninnhold på disse prøvene. Enaksielt trykkforsøk utføres i henhold til NS8016.

Resultatene er vist i figur D2-D3, D7-D8.

D2.5 Flyte- (w_L) og utrullingsgrense (w_P)

Plastisitets grensene bestemmes i henhold til ref. /D2/ og /D3/ og plastisitets indeks (I_P) bestemmes ved I_P=w_L-w_P.

Resultatene er vist i figur D1 og D6.

D3 Kornfordeling

Kornfordelingsanalyse utføres i henhold til ref. /D4/ og for analysene er det benyttet Falling drop, ref. /D5/.

Resultatene er vist i figur D4-D5 og D9.

D4 Referanser

- /D1/ Håndbok R210, Laboratorieundersøkelser Statens vegvesen
- /D2/ Geoteknisk prøving. Laboratoriemetoder. Konusflytegrensen. NS 8002, Standard Norge, datert 1. november 1982.
- /D3/ Geoteknisk prøving. Laboratoriemetoder. Plastisitetsgrensen. NS 8003 Standard Norge, datert 1. november 1982.
- /D4/ Geoteknisk prøving. Laboratoriemetoder. Kornfordelingsanalyse av jordprøver. NS 8005 Standard Norge, datert 1. desember 1990.
- /D5/ Falling drop used for grain-size analysis of fine grained materials. Sedimentology, Vol. 5, No. 4, pp. 343-347. Also publ. in: Norwegian Geotechnical Institute. Publication, 70, 1966.
 Moum, J. (1965).

C:\Users\evs\AppData\Local\Temp\KeyLAB\1f9c1d1b-8247-470e-ba9e-0fd3f3537fd6\[UCS Output.xlsm]Sheet 002

Dokumentnr.: 20190539-32-R Dato: 2021-03-18 Rev.nr.: 0 Vedlegg E, side: 1

Vedlegg E

TREAKSIALFORSØK

Innhold

E1	Metode	2
E2	Innbygging av prøver	2
E3	Resultater	2
E4	Referanser	2

Bilag

Bilag E1 Sammenstilling av treaksialforsøk

Figurer

Figur E1-E10 Resultater fra treaksialforsøk

Dokumentnr.: 20190539-32-R Dato: 2021-03-18 Rev.nr.: 0 Vedlegg E, side: 2

E1 Metode

Det er utført til sammen 5 aktive treaksialforsøk på prøver fra 2 borhull. Tabellen under viser en oversikt over utførte treaksialforsøk for de ulike borpunktene.

Tabell 1 Oversikt over treaksialforsøk

Borpunkt	Dybde (m)	Type forsøk
05-005	6,2 m, 12,2 m og 18,4 m	CAUA
05-006	5,2 m og 7,4 m	CAUA

Prøvene er konsolidert anisotropt til antatt in-situ spenninger.

E2 Innbygging av prøver

Prøvene er montert i celler med 72 mm diameter og høyde 140 mm. Filter og slanger mettes opp når prøvene er påført en isotrop spenning tilsvarende antatt svelletrykk. Etter metning av systemet blir prøvene lastet opp isotropt til den spesifiserte horisontalspenningen. Prøven står da vanligvis en natt og konsoliderer før et mottrykk blir påført for å øke metningen. Etter mottrykket blir resten av vertikal spenningen lastet opp i trinn.

Når prøven er lastet opp og ferdig konsolidert starter skjæringen. Det benyttes en standard skjæringshastighet på ca. 1,5 % per time. Prøven blir kjørt til ca. 15 % aksiell tøyning.

E3 Resultater

Resultatene er presentert i figur E1-E10. To diagrammer vises for hvert forsøk.

E4 Referanser

 /E1/ Andersen, A., Berre, T., Kleven, A. og Lunne, T. (1979) Procedures used to obtain soil parameters for foundation engineering in the North Sea.
 Marine Geotechnology, Vol. 3, No. 3, pp. 201-266
 Også publisert i: Norges Geotekniske Institutt, Publikasjon 129.

/E2/ Berre, T. (1982) Triaxial testing at the Norwegian Geotechnical Institute.

Dokumentnr.: 20190539-32-R Dato: 2021-03-18 Rev.nr.: 0 Vedlegg E, side: 3

Geotechnical Testing Journal, Vol. 5. No. ½ pp. 3-17. Også publisert i: Norges Geotekniske Institutt, Publikasjon 134 (1981), pp. 7-23.

20190539-32-R IC SMS

SAMMENSTILLING AV TREAKSIALFORSØK

PRØVE	PRØVE IDENTIFISERING				INDEKSEGENSKAPER					KONSOLIDERING												
Hull nr.	Prøve diameter	Sylinder Del	Dybde	Jordart	w _i	w ₁	w _p	Ір	Leir Innh.	Ytot	Type forsøk	P' 0v	σ' _{ac}	σ'rc	K ₀ '	ε _{vol}	E _{ac}	w _c	В	∆e/e ₀	∆e/e ₀	Prøve kvalitet
	mm		т		%	%	%	%	%	kN/m^3		kPa	kPa	kPa		%	%	%	%			
05-005	72	1-A-1	6.22	Leire	19.60	26.0	13.0	13.0	28.3	22.20	CAUA	943	94.3	56.6	0.60	5.61	2.26	16.50	95.9	0.160	0.158	Veldig dårlig
05-005	72	2-A-1	12.20	Leire	25.90	27.0	16.0	11.0	-	20.10	CAUA	149.3	149.2	82.1	0.55	5.48	2,78	22.40	99.0	0.132	0.135	Dårlig
05-005	72	3-A-1	18,42	Leire	29,90	22,0	14,0	8,0	40,1	19,50	CAUA	206,1	206,0	103,1	0,50	4,39	2,85	27,00	98,2	0,097	0,097	Dårlig
05-006	72	1-A-1	5,20	Leire	21,40	24,0	15,0	9,0	36,9	-	CAUA	90,8	90,8	58,1	0,64	0,38	0,40	21,20	98,4	0,010	0,009	Meget god, utmerket
05-006	72	2-A-1	7,38	Leire	25,30	27,0	17,0	10,0	-	20,00	CAUA	110,2	110,2	71,6	0,65	0,63	0,54	24,90	98,8	0,015	0,016	Meget god, utmerket
05-006 72 2-A-1 7,38 Leire 25,30 27,0 17,0 10,0 - 20,00 CAUA 110,2 110,2 71,6 0,65 0,63 0,54 24,90 98,8 0,015 0,015 w1 In-situ vanninnhold Provekvalitet: 1 Meget god, utmerket Image: state sta																						
u _r ε _r ∆e/e₀	Poretrykk i j Vertikal tøy Δe = εvol (1	orøven ved l ning ved bru +e _i) og e _i =	orudd 1dd 2.75 * w _i																			

H:\LABDATA\2019\20190539\AdvancedTest\03_TX\01_InProgress\20190539_05-005_1-A-1_StressStrain.grf

H:\LABDATA\2019\20190539\AdvancedTest\03_TX\01_InProgress\20190539_05-005_2-A-1_StressPath.grf

H:\LABDATA\2019\20190539\AdvancedTest\03_TX\01_InProgress\20190539_05-005_2-A-1_StressStrain.grf

H:\LABDATA\2019\20190539\AdvancedTest\03_TX\01_InProgress\20190539_05-005_3-A-1_StressPath.grf

H:\LABDATA\2019\20190539\AdvancedTest\03_TX\01_InProgress\20190539_05-005_3-A-1_StressStrain.grf

H:\LABDATA\2019\20190539\AdvancedTest\03_TX\01_InProgress\20190539_05-006_1-A-1_StressStrain.grf

H:\LABDATA\2019\20190539\AdvancedTest\03_TX\01_InProgress\20190539_05-006_2-A-1_StressPath.grf

H:\LABDATA\2019\20190539\AdvancedTest\03_TX\01_InProgress\20190539_05-006_2-A-1_StressStrain.grf

Dokumentnr.: 20190539-32-R Dato: 2021-03-18 Rev.nr.: 0 Vedlegg F, side: 1

Vedlegg F

ØDOMETERFORSØK

Innhold

F1	Metode	2
F2	Innbygging av prøve	2
F3	Resultater	2
F4	Referanser	3

Bilag

Bilag F1 Sammenstilling av ødometerforsøk

Figurer

Figur F1-F16 Resultater fra ødometerforsøk

NGI

F1 Metode

Det er gjennomført totalt 4 ødometerforsøk på prøver fra to borehull. Tabellen under viser en oversikt over utførte ødometerforsøk for de ulike borpunktene.

Tabell 1 Oversikt over ødometerforsøk

Borpunkt	Dybde (m)
05-005	6,4 m, 12,3 m og 18,5 m
05-006	5,3 m

Forsøkene er utført iht. NS8018, samt nærmere prosedyrer for ødometerforsøk ved NGI, beskrevet av Sandbækken, se /F1/ - /F3/.

F2 Innbygging av prøve

Prøvene bygges inn i en 35 cm² celle med høyde 20 mm. Forsøket kjøres med konstant deformasjonshastighet samtidig som last, deformasjon og poretrykk logges kontinuerlig.

Prøven kan drenere fritt på toppen, men er tett i bunn. Deformasjonshastigheten velges slik at poretrykket som måles i bunn av prøven ikke overstiger 5 - 10 % av spenningen som blir påført.

F3 Resultater

Resultatene fra hvert enkelt forsøk er presentert i figur F1-F16. For hvert forsøk vises fire diagrammer.

NGI

F4 Referanser

- /F1/ NS 8018:1993 Geoteknisk prøving - Laboratoriemetoder - Bestemmelse av endimensjonale konsolideringsegenskaper ved ødometerprøving - Metode med kontinuerlig belastning
- /F2/ Lacasse, S., Berre, T., and Lefebvre, G. (1985) Block sampling of sensitive clays.
 Proc. 11th Int. Conf. on Soil Mech. and Found. Eng. San Fransisco, Vol. 2, pp. 887-892 Also publ. in: Norwegian Geotechnical Institute. Publication, 163, 1986
- /F3/ Sandbækken, G., Berre, T., and Lacasse, S. (1986)
 Oedometer tesing at the Norwegian Geotechnical Institute Concolidation og soils: Testing and evaluation
 ASTM STP 892, R.N. Young and F.C. Townsend, Eds., 1986

20190539-32-R IC SMS SAMMENSTILLING AV ØDOMETERFORSØK

	Klassifisering						Konsolidering							OCR				
Hull	Prøve	Sylinder-	Dybde	Jordart	Wi	WP	WL	lp	γ _T	Leir	p _{0v} '	ΔV/V	∆e/e _i	M0/ML	Prøve	Prøve	Prøve	OCR
nr.	diameter	del-test								innhold	(antatt)	ved p _{0v} '			kvalitet	kvalitet	kvalitet	
	mm		m		%	%	%	%	kN/m ³	%	kPa	%			SVV	NVE	Karlsrud	kPa
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
05-005 05-005 05-005 06-006	72 72 72 72 72	1-A-2 2-A-2 3-A-2 1-A-2	6,39 12,30 18,52 5,30	Leire Leire Leire Leire	21,7 27,9 30,0 22,5	13,0 16,0 14,0 15,0	26,0 27,0 22,0 24,0	13,0 11,0 8,0 9,0	21,1 19,5 19,3 20,6	28,3 - 40,1 36,9	98,0 152,0 205,0 94,0	8,14 6,37 7,07 0,92	0,218 0,147 0,156 0,024	- - - -	Meget dårlig Meget dårlig Meget dårlig Meget dårlig	Forstyrret Forstyrret Forstyrret Forstyrret	Dårlig Dårlig Dårlig Dårlig	- - - -
will Insitu vanninnhold Prøvekvali wip Plastisitetsgrense will Flytegrense lip wip. Plastisitetsindeks				itet i hht S	hht SVV: Volumtøyning Δe/e0 OCR Meget god God-bra D. 1-2 <0,04				g Meget dårlig -0,14>0,14 -0,14>0,10									
γт	Total romvekt Prøvekvali					NVE:	Volumtø	Volumtøyning $\Delta V/V0$ (evol)				Prøvekvalitet i hht Karlsrud:						
p _{ov} '	Effektivt vertikalt overlagringstrykk					OCR Kv.kl.1 Perfekt		Kv.kl.1 Akseptabel		Kv.kl.2 Forstyrret			M0/ML					
ΔV/V	Tøyning ved p _{0v} `					1-1,2	<3,0		3,0-5,0		>5,0			<1	Meget dårlig			
$\Delta e/e_0$	$\Delta e = \varepsilon_{ac} (1+e_i) \text{ og } e_i = 2.75 * w_i$					1,2-1,5	<2,0		2,0-4,0		>4,0			1-1,5	Dårlig			
						1,5-2	<1,5		1,5-3,5		>3,5			1,5-2	God			
						2-3	<1,0		1,0-3,0		<3,0			2-4	Meget god			
						3-8	-8 <0,5			0,5-1,0		>1,0		>4	Særdeles go	d		

H:\LABDATA\2019\20190539\AdvancedTest\01_0ed\01_CRS\01_InProgress\20190539_05-005_1-A-2_L0G.grf

H:\LABDATA\2019\20190539\AdvancedTest\01_0ed\01_CRS\01_InProgress\20190539_05-005_1-A-2_L0GPerm.grf

H:\LABDATA\2019\20190539\AdvancedTest\01_0ed\01_CRS\01_InProgress\20190539_05-005_2-A-2_L0G.grf

H:\LABDATA\2019\20190539\AdvancedTest\01_0ed\01_CRS\01_InProgress\20190539_05-005_3-A-2_L0G.grf

H:\LABDATA\2019\20190539\AdvancedTest\01_Oed\01_CRS\01_InProgress\20190539_05-006_1-A-2_L0GPerm.grf